Intercalated complexes of 1T′-MoS2 nanosheets with alkylated phenylenediamines as excellent catalysts for electrochemical hydrogen evolution

Journal of Materials Chemistry A - Tập 7 Số 5 - Trang 2334-2343
In Hye Kwak1,2,3,4, Ik Seon Kwon1,2,3,4, Hafiz Ghulam Abbas5,3, Jaemin Seo1,2,3,4, G. Jung1,2,3,4, Yeron Lee1,2,3,4, Doyeon Kim1,2,3,4, Jae‐Pyoung Ahn6,7,8, Jeunghee Park1,2,3,4, Hong Seok Kang9,10,3
1Department of Chemistry, Korea University, Sejong 339-700, Republic of Korea
2Korea University
3Republic of Korea
4Sejong 339-700
5Department of Nanoscience and Nanotechnology, Jeonbuk National University Chonju, Chonbuk 560-756, Republic of Korea
6Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
7Korea
8Seoul 136-791
9Chonju
10Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk 560-759, Republic of Korea

Tóm tắt

Two-dimensional 1T′ phase MoS2 that was intercalated with a series of alkylated p-phenylenediamines exhibits excellent catalytic activity toward hydrogen evolution reaction, supported by first-principles calculations.

Từ khóa


Tài liệu tham khảo

Jiao, 2015, Chem. Soc. Rev., 44, 2060, 10.1039/C4CS00470A

Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483

Kibsgaard, 2012, Nat. Mater., 11, 963, 10.1038/nmat3439

Yan, 2014, ACS Catal., 4, 1693, 10.1021/cs500070x

Benck, 2014, ACS Catal., 4, 3957, 10.1021/cs500923c

Voiry, 2013, Nat. Mater., 12, 850, 10.1038/nmat3700

Xie, 2013, Adv. Mater., 25, 5807, 10.1002/adma.201302685

Voiry, 2013, Nano Lett., 13, 6222, 10.1021/nl403661s

Lukowski, 2013, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s

Maitra, 2013, Angew. Chem., Int. Ed., 52, 13057, 10.1002/anie.201306918

Wang, 2013, Proc. Natl. Acad. Sci. U. S. A., 110, 19701, 10.1073/pnas.1316792110

Liu, 2015, Small, 11, 5556, 10.1002/smll.201501822

Chou, 2015, Nat. Commun., 6, 8311, 10.1038/ncomms9311

Wu, 2015, J. Mater. Chem. A, 3, 13050, 10.1039/C5TA02010G

Voiry, 2016, Nat. Mater., 15, 1003, 10.1038/nmat4660

Geng, 2016, Nat. Commun., 7, 10672, 10.1038/ncomms10672

Yin, 2016, J. Am. Chem. Soc., 138, 7965, 10.1021/jacs.6b03714

Wang, 2017, J. Mater. Chem. A, 5, 2681, 10.1039/C6TA09409K

Wang, 2017, Angew. Chem., Int. Ed., 56, 7610, 10.1002/anie.201703066

Zhang, 2017, Adv. Mater., 29, 1701955, 10.1002/adma.201701955

Presolski, 2017, Chem. Mater., 29, 2066, 10.1021/acs.chemmater.6b04171

Chen, 2018, ACS Nano, 12, 308, 10.1021/acsnano.7b06364

Benson, 2018, J. Am. Chem. Soc., 140, 441, 10.1021/jacs.7b11242

Yu, 2018, Nat. Chem., 10, 638, 10.1038/s41557-018-0035-6

Xiong, 2018, ACS Energy Lett., 3, 997, 10.1021/acsenergylett.8b00110

Luxa, 2018, ACS Catal., 8, 2774, 10.1021/acscatal.7b04233

Tan, 2018, Adv. Mater., 30, 1705509, 10.1002/adma.201705509

Anjum, 2018, Adv. Mater., 30, 1707105, 10.1002/adma.201707105

Kwon, 2018, Nanoscale, 10, 11349, 10.1039/C8NR02365D

Kwak, 2018, Nanoscale, 10, 14726, 10.1039/C8NR03661F

Luo, 2018, Nat. Commun., 9, 2120, 10.1038/s41467-018-04501-4

Xu, 2018, Appl. Catal., B, 220, 379, 10.1016/j.apcatb.2017.08.035

Li, 2018, Appl. Catal., B, 229, 227, 10.1016/j.apcatb.2018.02.025

Li, 2016, Nat. Mater., 15, 48, 10.1038/nmat4465

Lin, 2016, ACS Nano, 10, 8929, 10.1021/acsnano.6b04904

Ye, 2016, Nano Lett., 16, 1097, 10.1021/acs.nanolett.5b04331

Li, 2016, J. Am. Chem. Soc., 138, 5123, 10.1021/jacs.6b01377

Tsai, 2017, Nat. Commun., 8, 15113, 10.1038/ncomms15113

Zhou, 2014, J. Mater. Chem. A, 2, 11358, 10.1039/c4ta01898b

Xiao, 2017, Adv. Energy Mater., 7, 1602086, 10.1002/aenm.201602086

Li, 2017, J. Power Sources, 356, 133, 10.1016/j.jpowsour.2017.04.060

Tang, 2018, Adv. Mater., 30, 1705110, 10.1002/adma.201705110

Kresse, 1993, Phys. Rev. B, 47, 558, 10.1103/PhysRevB.47.558

Kresse, 1996, Phys. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169

Kresse, 1999, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758

Grimme, 2006, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495

Henkelman, 2000, J. Chem. Phys., 113, 9901, 10.1063/1.1329672