Interactive effects of low phosphorus and elevated CO2 on root exudation and nutrient uptake in wheat is modified under sulphur nutrition

Plant Physiology Reports - Tập 24 Số 1 - Trang 63-73 - 2019
Milan Kumar Lal1, Krishnapriya Vengavasi1, Renu Pandey1
1Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Archer, M. J. (1974). A sand culture experiment to compare the effects of sulphur on five wheat cultivars (T. aestivum L.). Australian Journal of Agricultural Research, 25, 369–380.

Ascencio, J. (1994). Acid phosphatase as a diagnostic tool. Communication in Soil Science and Plant Analysis, 25, 1553–1564.

Besford, R. T. (1980). Quantitative aspects of leaf acid phosphatase activity and the phosphorus status of tomato plants. Annals of Botany, 44, 153–161.

Bradford, M. M. (1976). A rapid and sensitive methods for the quantitation of microgram of proteins utilizing the principle of protein-dye-binding. Annals of Biochemistry, 72, 248–254.

Campbell, C. D., & Sage, R. F. (2002). Interactions between atmospheric CO2 concentration and phosphorus nutrition on the formation of proteiod roots in white lupin (Lupinus albus L.). Plant Cell Environment, 25, 1051–1059.

Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environment Change, 19, 292–305.

Essigmann, B., Guler, S., Narang, R. A., Linke, D., & Benning, C. (1998). Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA, 95, 1950–1955.

Gao, Y., Li, X., Tian, Q. Y., Wang, B. L., & Zhang, W. H. (2016). Sulfur deficiency had different effects on Medicago truncatula ecotypes A17 and R108 in terms of growth, root morphology and nutrient contents. Journal of Plant Nutrition, 39(3), 301–314.

Hammond, J. P., & White, P. J. (2011). Sugar signaling in root responses to low phosphorus availability. Plant Physiology, 156(3), 1033–1040.

Honsel, A., Kojima, M., Haas, R., Frank, W., Sakakibara, H., Herschbach, C., et al. (2012). Sulphur limitation and early sulphur deficiency responses in poplar: Significance of gene expression, metabolites, and plant hormones. Journal of Experimental Botany, 63, 1873–1893.

Lal, M. K. (2015). Effect of high [CO2] on phosphorus efficiency in wheat grown under phosphorus stress with different sulphur levels. M.Sc. Thesis, ICAR-Indian Agricultural Research Institute, New Delhi, India

Lambers, H., Cawthray, G. R., Giavalisco, P., Kuo, J., Laliberté, E., Pearse, S. J., et al. (2012). Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. New Phytologist, 196, 1098–1108.

Leakey, A. D. B., Xu, F., Gillespie, K. M., McGrath, J. M., Ainsworth, E. A., & Ort, D. R. (2009). Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide. Proceedings of the National Academy of Sciences, USA, 106, 3597–3602.

Mathur, P. N., Sharma, D. D., & Jain, G. L. (1988). An improved turbidimetric estimation of total sulfur in plant samples. Z. Pflanzenernaehr. Bodenk., 151, 77–79.

Mehra, P., Pande, B. K., & Giri, J. (2017). Improvement in phosphate acquisition and utilization by a secretory purple acid phosphatase (OsPAP21b) in rice. Plant Biotechnology Journal, 15, 1054–1067.

Mishra, S. V., Maurya, D., & Gupta, G. (2010). Effect of phosphorus and sulphur and their interaction on mustard crop. Asian Sciences, 5(2), 79–84.

Murphy, J., & Riley, J. P. (1962). A modified single-solution method for the determination of phosphorus in natural waters. Analytica Chimica Acta, 27, 31–36.

Niu, Y., Chai, R., Dong, H., Wang, H., Tang, C., & Zhang, Y. (2013). Effect of elevated CO2 on phosphorus nutrition of phosphate deficient Arabidopsis thaliana (L.) Heynh under different nitrogen forms. Journal of Experimental Botany, 64, 355–367.

Osaki, M., & Shinano, T. (2000). In J. E. Sheehy, P. L. Mitchell, & B. Hardy (Eds.), Redesigning rice photosynthesis to increase yield (pp. 177–192). Philippines: Elsevier.

Pandey, R., Dubey, K. K., Ahmad, A., Nilofar, R., Verma, R., Jain, V., et al. (2015a). Elevated CO2 improves growth and phosphorus utilization efficiency in cereal species under suboptimal phosphorus supply. Journal of Plant Nutrition, 38, 1196–1217.

Pandey, R., Lal, M. K., & Vengavasi, K. (2018). Differential response of hexaploid and tetraploid wheat to interactive effects of elevated [CO2] and low phosphorus. Plant Cell Reports. https://doi.org/10.1007/s00299-018-2307-4 .

Pandey, R., Meena, S. K., Krishnapriya, V., Ahmad, A., & Kishora, N. (2014). Root carboxylate exudation capacity under phosphorus stress does not improve grain yield in green gram. Plant Cell Report, 33, 919–992.

Pandey, R., Zinta, G., AbdElgawad, H., Ahmad, A., Jain, V., & Janssens, I. A. (2015b). Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress. Biotechnology Advances, 33, 303–316.

Pausch, J., & Kuzyakov, Y. (2017). Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Global Change Biology. https://doi.org/10.1111/gcb.13850 .

Peñaloza, E., Muñoz, G., Salvo-Garrido, H., Silva, H., & Corcuera, L. J. (2005). Phosphate deficiency regulates phosphoenolpyruvate carboxylase expression in proteoid root clusters of white lupin. Journal of Experimental Botany, 56, 145–153.

Phogat, M. (2016). Effects of phosphorus and sulphur interaction on nutrient uptake and yield of black gram (Vigna mungo L. Hepper). M.Sc. Thesis, Sher-e-Kashmir University of Agricultural Sciences & Technology, Jammu, India.

Prior, S. A., Rogers, H. H., Mullins, G. L., & Runion, G. B. (2003). The effects of elevated atmospheric CO2 and soil P placement on cotton root deployment. Plant and Soil, 255, 179–187.

Raghothama, K. G. (1999). Phosphate acquisition. Annual Review of Plant Physiology and Molecular Biology, 50, 665–693.

Shahzad, Z., & Amtmann, A. (2017). Food for thought: How nutrients regulate root system architecture. Current Opinion in Plant Biology, 39, 80–87.

Shankaralingappa, B. C., Shivaraj, K. B., Vishwanatha, K. P., & Sreeramulu, B. S. (1998). Phosphorus–sulphur interactions on growth and yield of pigeonpea. Mysore Journal of Agricultural Sciences, 33, 1–5.

Sinclair, A. G., Smith, L. C., Morrison, J. D., & Dodds, K. G. (1996). Effects and interactions of phosphorus and sulphur on a mown white clover/ryegrass sward: 1. Herbage dry matter production and balanced nutrition. New Zealand Journal of Agricultural Research, 39(3), 421–433.

Trolove, S. N., Hedley, M. J., Kirk, G. J. D., Bolan, N. S., & Loganathan, P. (2003). Progress in selected areas of rhizosphere research on P acquisition. Soil Research, 41(3), 471–499.

Vengavasi, K., Kumar, A., & Pandey, R. (2016). Transcript abundance, enzyme activity and metabolite concentration regulates differential carboxylate efflux in soybean under low phosphorus stress. Indian Journal of Plant Physiology, 21(2), 179–188.

Vengavasi, K., & Pandey, R. (2016). Root exudation index: Screening organic acid exudation and phosphorus acquisition efficiency in soybean genotypes. Crop and Pasture Science, 67(10), 1096–1109. https://doi.org/10.1071/CP15329 .

Vengavasi, K., & Pandey, R. (2018). Root exudation potential in contrasting soybean genotypes in response to low soil phosphorus availability is determined by photo-biochemical processes. Plant Physiology and Biochemistry, 124, 1–9.

Watanabe, C. K., Sato, S., Yanagisawa, S., Uesono, Y., Terashima, I., & Noguchi, K. (2014). Effects of elevated CO2 on levels of primary metabolites and transcripts of genes encoding respiratory enzymes and their diurnal patterns in Arabidopsis thaliana: Possible relationships with respiratory rates. Plant and Cell Physiology, 55, 341–357.

Watt, M., & Evans, J. R. (1999). Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiology, 120, 705–716.