Các hiệu ứng tương tác giữa điều kiện lạnh và ôn đới đối với sự phát triển và thành phần hóa sinh của vi tảo Nam Cực Chlorella variabilis YTU.ANTARCTIC.001

Springer Science and Business Media LLC - Tập 35 - Trang 625-637 - 2023
Benan İnan1, Başak Akın1, İlayda Dilara Ünlü1, Anıl Tevfik Koçer1, Arzu Çelik1, Meyrem Vehapi1, Yılmaz Kaya2,3, Didem Özçimen1
1Bioengineering Department, Yıldız Technical University, İstanbul, Turkey
2Agricultural Biotechnology Department, Ondokuz Mayıs University, Samsun, Turkey
3Department of Biology, Kyrgyz-Turkish Manas University, Manas, Kyrgyzstan

Tóm tắt

Mục tiêu của nghiên cứu này là tách biệt và xác định các loài vi tảo Nam Cực thu thập qua Cuộc thám hiểm Khoa học Quốc gia Nam Cực, đồng thời kiểm tra phản ứng tăng trưởng và thành phần hóa sinh của Chlorella variabilis dưới điều kiện nuôi trồng lạnh và ôn đới trong môi trường tăng trưởng bao gồm các nồng độ nitơ khác nhau dưới các thông số chu kỳ ánh sáng khác nhau. Trong nghiên cứu này, vi tảo Nam Cực Chlorella variabilis YTU.ANTARCTIC.001, được nuôi cấy ở các nhiệt độ khác nhau là 4, 13, 20 và 27 °C trong môi trường BG-11 đã được điều chỉnh với các nồng độ NaNO3 khác nhau (0, 0.75, 1.5, 2.5 và 3 g L−1) dưới ba chu kỳ ánh sáng (8:16, 16:8 và 24:0) để điều tra sự tăng trưởng và thành phần hóa sinh. Tốc độ tăng trưởng đặc trưng thay đổi từ 0.012 đến 0.23 ngày−1 với sự gia tăng nồng độ nitrat, nhiệt độ và chu kỳ ánh sáng. Tốc độ tăng trưởng đặc trưng cao nhất là 0.23 ngày−1 khi sử dụng môi trường nuôi cấy gồm 3 g L−1 nitrat ở 27 °C dưới chu kỳ ánh sáng–tối là 16:8 h, trong khi không có sự tăng trưởng tảo ở 4 °C. Hàm lượng carbohydrate, protein, chlorophyll-a và β-carotene của vi tảo tăng lên với nồng độ nitơ tăng ở 20 °C và 27 °C. Hàm lượng lipid cao nhất đạt được là 66% trọng lượng khô (DW), sử dụng môi trường nuôi cấy gồm 0.75 g L−1 nitrat ở 13 °C. Nghiên cứu này nhấn mạnh rằng việc sản xuất vi tảo Nam Cực C. variabilis có thể được thực hiện hiệu quả trong điều kiện ôn đới bằng cách điều chỉnh các thông số tăng trưởng.

Từ khóa

#vi tảo #Nam Cực #tăng trưởng #thành phần hóa sinh #Chlorella variabilis #điều kiện ôn đới #nitrat

Tài liệu tham khảo

Aussant J, Guihéneuf F, Stengel DB (2018) Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae. Appl Microbiol Biotechnol 102:5279–5297 Barati B, Lim PE, Gan SY, Poong SW, Phang SM, Beardall J (2018) Effect of elevated temperature on the physiological responses of marine Chlorella strains from different latitudes. J Appl Phycol 30:1–13 Benedetti M, Lanzoni I, Nardi A, d’Errico G, Di Carlo M, Fattorini D, Nigro M, Regoli F (2016) Oxidative responsiveness to multiple stressors in the key Antarctic species, Adamussium colbecki: interactions between temperature, acidification and cadmium exposure. Mar Environ Res 121:20–30 Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 Carvalho AP, Monteiro CM, Malcata FX (2009) Simultaneous effect of irradiance and temperature on biochemical composition of the microalga Pavlova lutheri. J Appl Phycol 21:543–552 Cruces E, Huovinen P, Gómez I (2013) Interactive effects of UV radiation and enhanced temperature on photosynthesis, phlorotannin induction and antioxidant activities of two sub-Antarctic brown algae. Mar Biol 160:1–13 Cvetkovska M, Zhang X, Vakulenko G, Benzaquen S, Szyszka-Mroz B, Malczewski N, Smith DR, Huner NPA (2021) A constitutive stress response is a result of low temperature growth in the Antarctic green alga Chlamydomonas sp. UWO241. Plant Cell Environ 45:156–177 DeNicola DM (1996) Periphyton responses to temperature at different ecological levels. In: Stevenson RJ, Bothwell ML, Lowe RL, Thorp J (eds) Algal ecology: freshwater benthic ecosystems. Academic Press, NY, pp 149–181 Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356 Ebrahimian A, Kariminia HR, Vosoughi M (2014) Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater. Renew Energy 71:502–508 Ferruzzi MG, Blakeslee J (2007) Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr Res 27:1–12 Franco MC, Buffing MF, Janssen M, Lobato CV, Wijffels RH (2012) Performance of Chlorella sorokiniana under simulated extreme winter conditions. J Appl Phycol 24:693–699 Halim R, Hosikian A, Lim S, Danquah MK (2010) Chlorophyll extraction from microalgae: A review on the process engineering aspects. Int J Chem Eng 2010:391632 Hayashida G, Schneider C, Espíndola L, Arias D, Riquelme C, Wulff-Zottele C, Díaz-Palma P, Rivas M (2017) Characterization of a Chlorophyta microalga isolated from a microbial mat in Salar de Atacama (northern Chile) as a potential source of compounds for biotechnological applications. Phycol Res 65:202–211 Hoham RW, Remias D (2020) Snow and glacial algae: A review. J Phycol 56:264–282 Hopes A, Thomas DN, Mock T (2017) Polar microalgae: Functional genomics, physiology, and the environment. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: From Biodiversity to Biotechnology. Springer, Berlin, pp 305–344 Jacob-Lopes E, Scoparo CHG, Lacerda LMCF, Franco TT (2009) Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chem Eng Process Process Intensif 48:306–310 Khoeyi ZA, Seyfabadi J, Ramezanpour Z (2012) Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquac Int 20:41–49 Koçer AT, İnan B, Kaptan Usul S, Özçimen D, Yılmaz MT, Işıldak İ (2021) Exopolysaccharides from microalgae: production, characterization, optimization and techno-economic assessment. Braz J Microbiol 52:1779–1790 Lauritano C, Rizzo C, Lo GA, Saggiomo M (2020) Physiological and molecular responses to main environmental stressors of microalgae and bacteria in polar marine environments. Microorganisms 8:1957 Lee KK, Lim PE, Poong SW, Wong CY, Phang SM, Beardall J (2018) Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress. J Oceanol Limnol 36:1266–1279 Liao Q, Chang HX, Fu Q, Huang Y, Xia A, Zhu X, Zhong N (2018) Physiological-phased kinetic characteristics of microalgae Chlorella vulgaris growth and lipid synthesis considering synergistic effects of light, carbon and nutrients. Bioresour Technol 250:583–590 Los DA, Murata N (1999) Responses to cold shock in cyanobacteria. J Mol Microbiol Biotechnol 1:221–230 Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275 Lüder UH, Wiencke C, Knoetzel J (2002) Acclimation of photosynthesis and pigments during and after six months of darkness in Palmaria decipiens (Rhodophyta): A study to simulate Antarctic winter sea ice cover. J Phycol 38:904–913 Lyon BR, Mock T (2014) Polar microalgae: new approaches towards understanding adaptations to an extreme and changing environment. Biology (basel) 3:56–80 Macías-Sánchez MD, Mantell C, Rodríguez M, Martínez De La Ossa E, Lubián LM, Montero O (2005) Supercritical fluid extraction of carotenoids and chlorophyll-a from Nannochloropsis gaditana. J Food Eng 66:245–251 Manhaeghe D, Michels S, Rousseau DPL, Van Hulle SWH (2019) A semi-mechanistic model describing the influence of light and temperature on the respiration and photosynthetic growth of Chlorella vulgaris. Bioresour Technol 274:361–370 Morales-Sánchez D, Schulze PSC, Kiron V, Wijffels RH (2020) Production of carbohydrates, lipids and polyunsaturated fatty acids (PUFA) by the polar marine microalga Chlamydomonas malina RCC2488. Algal Res 50:102036 Novoveská L, Ross ME, Stanley MS, Pradelles R, Wasiolek V, Sassi JF (2019) Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Mar Drugs 17:640 Özçimen D, Kaya Y, Aksoy HM, Koçer AT, Çelik A, İnan B, Vehapi M, Özsoy B (2020) Isolation and identification of some microorganism species collected from Horseshoe Island, Skua Lake, Antarctica and microalgae cultivation. Scar Open Sci Conf, Hobart 2020:1059–1059 Patel AK, Joun JM, Hong ME, Sim SJ (2019) Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresour Technol 282:245–253 Politaeva N, Kuznetsova T, Smyatskaya Y, Trukhina E, Ovchinnikov F (2017) Impact of various physical exposures on Chlorella sorokiniana microalgae cultivation. Int J Appl Eng Res 12:11488–11492 Reay DS, Nedwell DB, Priddle J, Ellis-Evans JC (1999) Temperature dependence of inorganic nitrogen uptake: Reduced affinity for nitrate at suboptimal temperatures in both algae and bacteria. Appl Environ Microbiol 65:2577–2584 Remias D, Albert A, Lütz C (2010) Effects of realistically simulated, elevated UV irradiation on photosynthesis and pigment composition of the alpine snow alga Chlamydomonas nivalis and the arctic soil alga Tetracystis sp. (Chlorophyceae). Photosynthetica 48:269–277 Rezayian M, Niknam V, Ebrahimzadeh H (2019) Oxidative damage and antioxidative system in algae. Toxicol Rep 6:1309–1313 Schulze PSC, Hulatt CJ, Morales-Sánchez D, Wijffels RH, Kiron V (2019) Fatty acids and proteins from marine cold adapted microalgae for biotechnology. Algal Res 42:1–9 Segawa T, Matsuzaki R, Takeuchi N, Akiyoshi A, Navarro F, Sugiyama S, Yonezawa T, Mori H (2018) Bipolar dispersal of red-snow algae. Nat Commun 9:3094 Seyfabadi J, Ramezanpour Z, Khoeyi ZA (2011) Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. J Appl Phycol 23:721–726 Suh SS, Hong JM, Kim EJ, Jung SW, Kim SM, Kim JE, Kim IC, Kim S (2018) Anti-inflammation and anti-cancer activity of ethanol extract of antarctic freshwater microalga, Micractinium sp. Int J Med Sci 15:929–936 Suh SS, Hong JM, Kim EJ, Jung SW, Chae H, Kim JE, Kim JH, Kim IC, Kim S (2019) Antarctic freshwater microalga, Chloromonas reticulata, suppresses inflammation and carcinogenesis. Int J Med Sci 16:189–197 Tale M, Ghosh S, Kapadnis B, Kale S (2014) Isolation and characterization of microalgae for biodiesel production from Nisargruna biogas plant effluent. Bioresour Technol 169:328–335 Teoh ML, Chu WL, Marchant H, Phang SM (2004) Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J Appl Phycol 16:421–430 Teoh ML, Phang SM, Chu WL (2013) Response of Antarctic, temperate, and tropical microalgae to temperature stress. J Appl Phycol 25:285–297 Van Leeuwe MA, Stefels J (1998) Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). II. Pigment composition. J Phycol 34:496–503 Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186 Young JN, Schmidt K (2020) It’s what’s inside that matters: physiological adaptations of high-latitude marine microalgae to environmental change. New Phytol 227:1307–1318 Zhang Z, Qu C, Zhang K, He Y, Zhao X, Yang L, Zheng Z, Ma X, Wang X, Wang W, Wang K, Li D, Zhang L, Zhang X, Su D, Chang X, Zhou M, Gao D, Jiang W, Leliaert F, Bhattacharya D, De Clerck O, Zhong B, Miao J (2020) Adaptation to extreme Antarctic environments revealed by the genome of a sea ice green alga. Curr Biol 30:3330–3341 Zou N, Richmond A (2000) Light-path length and population density in photoacclimation of Nannochloropsis sp (Eustigmatophyceae). J Appl Phycol 12:349–354