Interactive design and manufacturing of a Voronoi-based biomimetic bone scaffold for morphological characterization

Massimiliano Fantini1, Marco Curto2
1School of Engineering and Architecture, Alma Mater Studiorum University of Bologna, Bologna, Italy
2School of Engineering, University of Portsmouth, Portsmouth, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Yang, S., Leong, K.F., Du, Z., Chua, C.K.: The design of scaffolds for use in tissue engineering. Part I traditional factors. Tissue Eng. 7(6), 679–689 (2001)

Hollister, S.J.: Porous scaffold design for tissue engineering. Nat. Mater. 4(7), 518–524 (2005)

Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. Springer, New York (2010)

Bibb, R., Eggbeer, D., Evans, P., Bocca, A., Sugar, A.: Rapid manufacture of custom-fitting surgical guides. Rapid Prototyp. J. 15(5), 346–354 (2009)

Singare, S., Lian, Q., Wang, W.P., Wang, J., Liu, Y., Li, D., Lu, B.: Rapid prototyping assisted surgery planning and custom implant design. Rapid Prototyp. J. 15(1), 19–23 (2009)

Ciocca, L., Fantini, M., De Crescenzio, F., Corinaldesi, G., Scotti, R.: Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches. Med. Biol. Eng. Comput. 49(11), 1347–1352 (2011)

Ciocca, L., Mazzoni, S., Fantini, M., Persiani, F., Baldissara, P., Marchetti, C., Scotti, R.: A CAD/CAM-prototyped anatomical condylar prosthesis connected to a custom-made bone plate to support a fibula free flap. Med. Biol. Eng. Comput. 50(7), 743–749 (2012)

Fantini, M., De Crescenzio, F., Ciocca, L.: Design and manufacturing of customized surgical devices for mandibular rehabilitation. Int. J. Interact. Des. Manuf. 7(4), 227–237 (2013)

Mazzoli, A.: Selective laser sintering in biomedical engineering. Med. Biol. Eng. Comput. 51(3), 245–256 (2013)

Meneghello, R., Savio, G., Raffaeli, R., Cerardi, A., Turchetto, M., Planchenstainer, L.: An inte grated methodology for the functional design of dental prosthesis. Int. J. Interact. Des. Manuf. 7(2), 103–114 (2013)

Fantini, M., De Crescenzio, F., Ciocca, L., Persiani, F.: Additive manufacturing to assist prosthetically guided bone regeneration of atrophic maxillary arches. Rapid Prototyp. J. 21(6), 705–715 (2015)

Barone, S., Casinelli, M., Frascaria, M., Paoli, A., Razionale, A.V.: Interactive design of dental implant placements through CAD-CAM technologies: from 3D imaging to additive manufacturing. Int. J. Interact. Des. Manuf. 10(2), 105–117 (2016)

Dahake, S.W., Kuthe, A.M., Mawale, M.B., Bagde, A.D.: Applications of medical rapid prototyping assisted customized surgical guides in complex surgeries. Rapid Prototy. J. 22(6), 934–946 (2016)

Naing, M.W., Chua, C.K., Leong, K.F., Wang, Y.: Fabrication of customised scaffolds using computer-aided design and rapid prototyping techniques. Rapid Prototyp. J. 11(4), 249–259 (2005)

Abdelaal, O.A., Darwish, S.M.: Fabrication of tissue engineering scaffolds using rapid prototyping techniques. World Acad. Sci. Eng. Technol. 59, 11–27 (2011)

Pawlak, A., Szymczyk, P., Ziolkowski, G., Chlebus, E., Dybala, B.: Fabrication of microscaffolds from Ti–6Al–7Nb alloy by SLM. Rapid Prototyp. J. 21(4), 393–401 (2015)

Sing, S.L., Yeong, W.Y., Wiria, F.E., Tay, B.Y.: Characterization of titanium lattice structures fabricated by selective laser melting using an adapted compressive test method. Exp. Mech. 56(5), 735–748 (2016)

Sing, S.L., Miao, Y., Wiria, F.E., Yeong, W.Y.: Manufacturability and mechanical testing considerations of metallic scaffolds fabricated using selective laser melting: a review. Biomed. Sci. Eng. 2(11), 18–24 (2016)

Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Qian, M., Brandt, M., Xie, Y.M.: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 83, 127–141 (2016)

Yang, S., Zhao, Y.F.: Additive manufacturing-enabled design theory and methodology: a critical review. Int. J. Adv. Manuf. Technol. 80, 327–342 (2015)

Kumke, M., Watschke, H., Vietor, T.: A new methodological framework for design for additive manufacturing. Virtual Phys. Prototyp. 11(1), 3–19 (2016)

Chua, C.K., Leong, K.F., Cheah, C.M., Chua, S.W.: Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: investigation and classification. Int. J. Adv. Manuf. Technol. 21, 291–301 (2003)

Sun, W., Starly, B., Nam, J., Darling, A.: Bio-CAD modelling and its applications in computer-aided tissue engineering. Comput. Aided Des. 37, 1097–1114 (2005)

Bucklen, B.S., Wettergreen, M.A., Yuksel, E., Liebschner, M.A.K.: Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering. Virtual Phys. Prototyp. 3(1), 13–23 (2008)

Yoo, D.J.: Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int. J. Precis. Eng. Manuf. 12(1), 61–67 (2011)

Yan, C., Hao, L., Hussein, A., Young, P.: Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J. Mech. Behav. Biomed. Mater. 51, 61–73 (2015)

Fantini, M., Curto, M., De Crescenzio, F.: TPMS for interactive modelling of trabecular scaffolds for Bone Tissue Engineering. In: Eynard, B., Nigrelli, V., Oliveri, S.M., Peris-Fajarnes, G., Rizzuti, S. (eds.) Advances on Mechanics, Design Engineering and Manufacturing, pp. 425–435. Springer, New York (2017)

Krish, S.: A practical generative design method. Comput. Aided Des. 43, 88–100 (2011)

Leitão, A., Santos, L., Lopes, J.: Programming languages for generative design: a comparative study. Int. J. Archit. Comput. 10(1), 139–162 (2012)

Leitão, A., Santos, L.: Programming languages for generative design: visual or textual? In: Proceedings of the 29th eCAADe (pp. 549–557) (2011)

Nordin, A., Hopf, A., Motte, D.: Generative design systems for the industrial design of functional mass producible natural-mathematical forms. In: Proceedings of the 5th International Congress of International Association of Societies of Design Research—IASDR’13 (pp. 2931–2941). International Association of Societies of Design Research (IASDR), Tokyo, Japan (2013)

Eckert, C., Kelly, I., Stacey, M.: Cognitive foundations for interactive generative systems in early design. In: International Conference on Engineering Design, ICED 99 Munich (1999)

Eckert, C., Kelly, I., Stacey, M.: Interactive generative systems for conceptual design: an empirical perspective. Artif. Intell. Eng. Des. Anal. Manuf. 13, 303–320 (1999)

Fantini, M., Curto, M., De Crescenzio, F.: A method to design biomimetic scaffolds for bone tissue engineering based on Voronoi lattices. Virtual Phys. Prototyp. 11(2), 77–90 (2016)

Aurenhammer, F.: Voronoi diagrams—A survey of a fundamental geometric data structure. AMC Comput. Surv. 23(3), 345–405 (1991)

Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations—Concepts and Applications of Voronoi Diagrams. Wiley, Hoboken (1992)

Okabe, A., Boots, B., Sugihara, K.: Nearest neighbourhood operations with generalized Voronoi diagrams: a review. Int. J. Geogr. Inf. Sci. 8(1), 43–71 (1994)

McCormack, J., Dorin, A., Innocent, T.: Generative design: a paradigm for design research. In: Redmond, J., et al. (eds.) Proceedings of Futureground. Design Research Society, Melbourne (2004)

Chase, S.C.: Generative design tools for novice designers: issues for selection. Autom. Constr. 14, 689–698 (2005)

Caldas, L.: Generation of energy-efficient architecture solutions applying GENE_ARCH: an evolution-based generative design system. Adv. Eng. Inf. 22(1), 59–70 (2008)

Nordin, A., Motte, D., Hopf, A., Bjärnemo, R., Eckhardt, C. C.: Complex product form generation in industrial design: a bookshelf based on Voronoi diagrams. DCC’10, Springer (pp. 701–720) (2010)

Nordin, A., Motte D., Hopf, A., Bjärnemo, R., Eckhardt, C.C.: Constraint-handling techniques for generative product design systems in the mass customization context. AI EDAM-Artif. Intell. Eng. Des. Anal. Manuf. 27(4), 387–399 (2013)

Atkinson, P., Unver, E., Marshall, J., Dean, L.T.: Post industrial manufacturing systems: the undisciplined nature of generative design. In: Durling, D., Rust, C., Chen, L-L., Ashton, P., Friedman, K. (eds.) Undisciplined! Design Research Society Conference 2008, Sheffield Hallam University (pp. 194/1–194/17) (2009)

Kielarova, S.W., Pradujphongphet, P., Bohez, E.L.J.: New interactive-generative design system: hybrid of shape grammar and evolutionary design—an application of jewelry design. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds.) Advances in Swarm and Computational Intelligence. Springer, New York (2015)

Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10(6), 350–355 (1978)

de Damborenea, J.J., Larosa, M.A., Arenas, M.A., Hernández-López, J.M., Jardini, A.L., Ierardi, M.C.F., Zavaglia, C.A.C., Filho, R.M., Conde, A.: Functionalization of Ti6Al4V scaffolds produced by direct metal laser for biomedical applications. Mater. Des. 83, 6–13 (2015)

Nouri, A.: Novel metal structures through powder metallurgy for biomedical applications. Institute for Technology Research and Innovation, Deakin University, Ph.D. Thesis (2008)

Doube, M., Kłosowski, M.M., Arganda-Carreras, I., Cordeliéres, F., Dougherty, R.P., Jackson, J., Schmid, B., Hutchinson, J.R., Shefelbine, S.J.: BoneJ: free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079 (2010)

Parkinson, I.H., Fazzalari, N.L.: Characterisation of trabecular bone structure. Stud. Mechanobiol. Tissue Eng. Biomater. 5, 31–51 (2013)

Hildebrand, T., Rüegsegger, P.: A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 185, 67–75 (1997)

Dougherty, R., Kunzelmann, K.: Computing local thickness of 3D structures with ImageJ. Microsc. Microanal. 13, 1678–1679 (2007)

Harrigan, T.P., Mann, R.W.: Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mater. Sci. 19, 761–767 (1984)

Odgaard, A.: Three-dimensional methods for quantification of cancellous bone architecture. Bone 20, 315–28 (1997)

Odgaard, A., Gundersen, H.J.G.: Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14, 173–182 (1993)

Toriwaki, J., Yonekura, T.: Euler number and connectivity indexes of a three dimensional digital picture. Forma 17, 183–209 (2002)

Hildebrand, T., Laib, A., Muller, R., Dequeker, J., Ruegsegger, P.: Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J. Bone Miner. Res. 14(7), 1167–1174 (1999)

Uchiyama, T., Tanizawa, T., Muramatsu, H., Endo, N., Takahashi, H.E., Hara, T.: Three-dimensional microstructural analysis of human trabecular bone in relation to its mechanical properties. Bone 25(4), 487–491 (1999)

Kabel, J., Odgaard, A., Van Rietbergen, B., Huiskes, R.: Connectivity and the elastic properties of cancellous bone. Bone 24(2), 115–120 (1999)

Hollister, S.J., Kikuchi, N.: Homogenization theory and digital imaging: a basis for study-ing the mechanics and design principles of bone tissue. Biotechnol. Bioeng. 43(7), 586–596 (1994)

Melchels, F.P., Bertoldi, K., Gabbrielli, R., Velders, A.H., Feijen, J., Grijpma, D.W.: Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31(27), 6909–6916 (2010)