Interactions of uranyl ion with cytochrome b 5 and its His39Ser variant as revealed by molecular simulation in combination with experimental methods

Journal of Molecular Modeling - Tập 18 - Trang 1009-1013 - 2011
Dun Wan1, Li-Fu Liao1, Min-Min Zhao1, Min-Long Wu1, Yi-Mou Wu2, Ying-Wu Lin1
1School of Chemistry and Chemical Engineering, University of South China, Hengyang, People’s Republic of China
2Institute of Pathogenic Biology, University of South China, Hengyang, People’s Republic of China

Tóm tắt

The biological toxicity of uranyl ion (UO 2 2+ ) lies in interacting with proteins and disrupting their native functions. The structural and functional consequences of UO 2 2+ interacting with cytochrome b 5 (cyt b 5), a small membrane heme protein, and its heme axial ligand His39Ser variant, cyt b 5 H39S, were investigated both experimentally and theoretically. In experiments, although cyt b 5 was only slightly affected, UO 2 2+ binding to cyt b 5 H39S with a K D of 2.5 μM resulted in obvious alteration of the heme active site, and led to a decrease in peroxidase activity. Theoretically, molecular simulation proposed a uranyl ion binding site for cyt b 5 at surface residues of Glu37 and Glu43, revealing both coordination and hydrogen bonding interactions. The information gained in this study provides insights into the mechanism of uranyl toxicity toward membrane protein at an atomic level.

Tài liệu tham khảo

Gorden AE, Xu J, Raymond KN, Durbin P (2003) Chem Rev 103:4207–4282 Vidaud C, Gourion-Arsiquaud S, Rollin-Genetet F, Torne-Celer C, Plantevin S, Pible O, Berthomieu C, Quéméneur E (2007) Biochemistry 46:2215–2226 Montavon G, Apostolidis C, Bruchertseifer F, Repinc U, Morgenstern A (2009) J Inorg Biochem 103:1609–1616 Michon J, Frelon S, Garnier C, Coppin F (2010) J Fluoresc 20:581–590 Pible O, Guilbaud P, Pellequer JL, Vidaud C, Quéméneur E (2006) Biochimie 88:1631–1638 Van Horn JD, Huang H (2006) Coord Chem Rev 250:765–775 Wegmer SV, Boyaci H, Chen H, Jensen MP, He C (2009) Angew Chem Int Edn 48:2339–2341 Lins RD, Vorpagel ER, Guglielmi M, Straatsma TP (2008) Biomacromolecules 9:29–35 Vergères G, Waskell L (1995) Biochimie 7:604–620 Wang WH, Wang YH et al (2002) Chem Lett 674–675 Chudaev MV, Gilep AA, Usanov SA (2001) Biochemistry (Moscow) 66:667–681 Wang WH, Lu JX, Yao P, Xie Y, Huang ZX (2003) Protein Eng 6:1047–1054 Sigman JA, Kwok BC, Lu Y (2000) J Am Chem Soc 122:8192–8196 Durley RC, Mathews FS (1996) Acta Crystallogr D 52:65–76 Wang ZH, Lin YW, Rosell FI, Ni FY, Lu HJ, Yang PY, Tan XS, Li XY, Huang ZX, Mauk AG (2007) Chembiochem 8:607–609 Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38 Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) J Comput Phys 151:283–312 Yeung N, Lin YW, Gao YG, Zhao X, Russell BS, Lei L, Miner KD, Robinson H, Lu Y (2009) Nature 462:1079–1082 Baldwin DA, Marques HM, Pratt JM (1987) J Inorg Biochem 30:203–217 Moore GR, Pettigrew GW (1990) Cytochrome c: evolutionary, structural and physicochemical aspects. Springer, Berlin Lin YW, Yeung N, Gao YG, Miner KD, Tian S, Robinson H, Lu Y (2010) Proc Natl Acad Sci USA 107:8581–8586 Lin YW, Yeung N, Gao YG, Miner KD, Lei L, Robinson H, Lu Y (2010) J Am Chem Soc 132:9970–9972 Lin YW, Wang WH, Zhang Q, Lu HJ, Yang PY, Xie Y, Huang ZX, Wu HM (2005) Chembiochem 6:1356–1359 Diederix RE, Ubbink M, Canters GW (2002) Biochemistry 41:13067–13077 Ren Y, Wang WH, Case M, Qian W, McLendon G, Huang ZX (2004) Biochemistry 4:3527–3536 Im SC, Waskell L (2011) Arch Biochem Biophys 507:144–153