Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tương tác của melatonin với ty thể động vật có vú. Giảm khả năng năng lượng và tăng cường sự chuyển tiếp thấm.
Tóm tắt
Melatonin, một sản phẩm chuyển hóa của axit amin tryptophan, gây ra sự giảm năng lượng phụ thuộc vào liều lượng, tương quan với sự giảm quá trình phosphoryl hóa oxy hóa ở ty thể gan chuột đã được tách rời. Hiệu ứng này liên quan đến sự giảm dần chỉ số kiểm soát hô hấp và những biến đổi đáng kể trong chuyển tiếp trạng thái 4/trạng thái 3 của điện thế màng (ΔΨ). Melatonin, một mình, không ảnh hưởng đến các tính chất cách điện của màng trong, nhưng trong sự hiện diện của Ca2+ ở mức siêu sinh lý, gây ra sự giảm ΔΨ và sưng màng ty thể do osmosis keo. Những sự kiện này nhạy cảm với cyclosporin A và các chất ức chế vận chuyển Ca2+, cho thấy sự cảm ứng hoặc khuếch đại của sự chuyển tiếp thấm của ty thể. Hiện tượng này được kích hoạt bởi stress oxy hóa do melatonin và Ca2+ gây ra, với sự tạo ra hydro peroxide và sự oxi hóa tương ứng của các nhóm sulfhydryl, glutathione và nucleotide pyridine. Ngoài ra, melatonin, một lần nữa trong sự hiện diện của Ca2+, cũng có thể gây ra sự giải phóng đáng kể cytochrom C và AIF (yếu tố kích thích apoptosis), do đó tiết lộ tiềm năng của nó như một tác nhân pro-apoptotic.
Từ khóa
#melatonin #ty thể #năng lượng #phosphoryl hóa oxy hóa #chuyển tiếp thấm #Ca2+ #apoptosisTài liệu tham khảo
Agostinelli E, Marques MPM, Calheiros R, Gil FPSC, Tempera G, Viceconte N, Battaglia V, Grancara S, Toninello A (2009) Polyamines: fundamental characters in chemistry and biology. Amino Acids 38:393–403
Andrabi SA, Sayeed I, Siemen D, Wolf G, Horn TF (2004) Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J 18:869–871
Arendt J (1996) Melatonin. BMJ 312:1242–1243
Battaglia V, Brunati AM, Fiore C, Rossi CA, Salvi M, Tibaldi E, Palermo M, Armanini D, Toninello A (2008) Glycyrrhetinic acid as inhibitor or amplifier of permeability transition in rat heart mitochondria. Biochim Biophys Acta 1778:313–323
Battaglia V, Grancara S, Satriano J, Saccoccio S, Agostinelli E, Toninello A (2010) Agmatine prevents the Ca(2+)-dependent induction of permeability transition in rat brain mitochondria. Amino Acids 38:431–437
Bejarano I, Redondo PC, Espino J, Rosado JA, Paredes SD, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB (2009) Melatonin induces mitochondrial-mediated apoptosis in human myeloid HL-60 cells. J Pineal Res 46:392–400
Bergstrom WH, Hakanson DO (1998) Melatonin: the dark force. Adv Pediatr 45:91–106
Buscemi N, Vandermeer B, Hooton N, Pandya R, Tjosvold L, Hartling L, Vohra S, Klassen TP, Baker G (2006) Efficacy and safety of exogenous melatonin for secondary sleep disorders and sleep disorders accompanying sleep restriction: meta-analysis. BMJ 332:385–393
Büyükavcı M, Özdemir Ö, Buck S, Stout M, Ravindranath Y, Savaşan S (2006) Melatonin cytotoxicity in human leukemia cells: relation with its pro-oxidant effect. Fundam Clin Pharmacol 20:73–79
Cardillo S, De Iuliis A, Battaglia V, Toninello A, Stevanato R, Vianello F (2009) Novel copper amine oxidase activity from rat liver mitochondria matrix. Arch Biochem Biophys 485:97–101
Cassone VM (1990) Effects of melatonin on vertebrate circadian systems. Trends Neurosci 13:457–464
Chan T-Y, Tang P-L (1996) Characterization of the antioxidant effects of melatonin and related indoleamines in vitro. J Pineal Res 20:187–191
De Marchi U, Biasutto L, Garbisa S, Toninello A, Zoratti M (2009) Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: a demonstration of the ambivalent redox character of polyphenols. Biochim Biophys Acta 1787:1425–1432
Espino J, Bejarano I, Redondo PC, Rosado JA, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB (2010) Melatonin reduces apoptosis induced by calcium signaling in human leukocytes: evidence for the involvement of mitochondria and Bax activation. J Membr Biol 233:105–118
Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766
Grijalba MT, Vercesi AE, Schreier S (1999) Ca2+-induced increased lipid packing and domain formation in submitochondrial particles. A possible early step in the mechanism of Ca2 + stimulated generation of reactive oxygen species by the respiratory chain. Biochemistry 38:13279–13287
Gutiérrez CI, Urbina M, Obregion F, Glykys J, Lima L (2006) Characterization of tryptophan high affinity transport system in pinealocytes of the rat. Day–night modulation. Amino Acids 25:95–105
Hansson MJ, Morota S, Teilum M, Mattiasson G, Uchino H, Elmér E (2010) Increased potassium conductance of brain mitochondria induces resistance to permeability transition by enhancing matrix volume. J Biol Chem 285:741–750
Herxheimer A (2006) Does melatonin help people to sleep? BMJ 332:373–374
Jensen BD, Gunter KK, Gunter TE (1986) The efficiencies of the component steps of oxidative phosphorylation. II. Experimental determination of the efficiencies in mitochondria and examination of the equivalence of membrane potential and pH gradient in phosphorylation. Arch Biochem Biophys 248:305–323
Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenylphosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121
Lemasters JJ, Hackenbrock CR (1976) Continuous measurement and rapid kinetics of ATP synthesis in rat liver mitochondria, mitoplasts and inner membrane vesicles determined by firefly-luciferase luminescence. Eur J Biochem 67:1–10
Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80:2587
Leung AW, Halestrap AP (2008) Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim Biophys Acta 1777:946–952
Leung AW, Varanyuwatana P, Halestrap AP (2008) The mitochondrial phosphate carrier interacts with cyclophilin-D and may play a key role in the permeability transition. J Biol Chem 283:26312–26323
Loschen G, Azzi A, Flohè L (1973) Mitochondrial H2O2 formation: relationship with energy conservation. FEBS Lett 33:84–87
Lötscher HR, Winterhalter KH, Carafoli E, Richter C (1980) The energy-state of mitochondria during the transport of Ca2+. Eur J Biochem 110:211–216
Martín M, Macías M, León J, Escames G, Khaldy H, Acuña-Castroviejo D (2002) Melatonin increases the activity of the oxidative phosphorylation enzymes and the production of ATP in rat brain and liver mitochondria. Int J Biochem Cell Biol 34:348–357
Matuszak Z, Reszka K, Chignell CF (1997) Reaction of melatonin and related indoles with hydroxyl radicals: EPR and spin trapping investigations. Free Radic Biol Med 23:367–372
McStay GP, Clarke SJ, Halestrap AP (2002) Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem J 367:541–548
Osseni RA, Rat P, Bogdan A, Warnet JM, Touitou Y (2000) Evidence of prooxidant and antioxidant action of melatonin on human liver cell line HepG2. Life Sci 68:387–399
Pandi-Perumal SR, Trakht I, Srinivasan V, Spence DW, Maestroni GJ, Zisapel N, Cardinali DP (2008) Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol 85:335–353
Petrosillo G, Moro N, Ruggiero FM, Paradies G (2009) Melatonin inhibits cardiolipin peroxidation in mitochondria and prevents the mitochondrial permeability transition and cytochrome c release. Free Radic Biol Med 47:969–974
Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F (1994) Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci 55:271–276
Reiter RJ, Tan DX (2002) What constitutes a physiological concentration of melatonin? J Pineal Res 34:79–80
Sainz RM, Mayo JC, Rodriguez C, Tan DX, Lopez-Burillo S, Reiter RJ (2003) Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cell Mol Life Sci 60:1407–1426
Salvi M, Brunati AM, Clari G, Toninello A (2002) Interaction of genistein with the mitochondrial electron transport chain results in opening of the membrane transition pore. Biochim Biophys Acta 1556:187–196
Santos AC, Uyemura SA, Lopes JL, Bazon JN, Mingatto FE, Curti C (1998) Effect of naturally occurring flavonoids on lipid peroxidation and membrane permeability transition in mitochondria. Free Radic Biol Med 24:1455–1461
Schneider WC, Hogeboom GH (1950) Intracellular distribution of enzymes V. Further studies on the distribution of cytochrome c in rat liver homogenates. J Biol Chem 183:123–128
Slominski A, Tobin DJ, Zmijewski MA, Wortsman J, Paus R (2008) Melatonin in the skin: synthesis, metabolism and functions. Trends in endocrinology and metabolism 19:17–24
Srinivasan V, Spence W, Pandi-Perumal SR, Trakht I, Cardinali DP (2008) Therapeutic actions of melatonin in cancer: possible mechanisms. Integr Cancer Ther 7:189–203
Tietze F (1969) Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione. Anal Biochem 27:502–522
Wölfler A, Caluba HC, Abuja PM, Dohr G, Schauenstein K, Liebmann PM (2001) Prooxidant activity of melatonin promotes fas-induced cell death in human leukemic Jurkat cells. FEBS Lett 502:127–131
Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704
Zhang HM, Zhang Y, Zhang BX (2011) The role of mitochondrial complex III in melatonin-induced ROS production in cultured mesangial cells. J Pineal Res 50:78–82