Interactions of duck Tembusu virus with Aedes aegypti and Aedes albopictus mosquitoes: Vector competence and viral mutation

Acta Tropica - Tập 222 - Trang 106051 - 2021
Nichapat Yurayart1, Patchareeporn Ninvilai2, Theeraphap Chareonviriyaphap3, Theerayuth Kaewamatawong4, Aunyaratana Thontiravong1,2, Sonthaya Tiawsirisup1
1Animal Vector-Borne Disease Research Unit, Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
2Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
3Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
4Veterinary Pathology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand

Tài liệu tham khảo

Aharoni, 2005, The 'evolvability' of promiscuous protein functions, Nat. Genet., 37, 73, 10.1038/ng1482 Arora, 2013, Virus-like particles displaying envelope domain III of dengue virus type 2 induce virus-specific antibody response in mice, Vaccine, 31, 873, 10.1016/j.vaccine.2012.12.016 Bezerra-Santos, 2021, Illegal wildlife trade: a gateway to zoonotic infectious diseases, Trends. Parasitol., 37, 181, 10.1016/j.pt.2020.12.005 Bollati, 2010, Structure and functionality in flavivirus NS-proteins: perspectives for drug design, Antiviral. Res., 87, 125, 10.1016/j.antiviral.2009.11.009 Chan, 2019, A T164S mutation in the dengue virus NS1 protein is associated with greater disease severity in mice, Sci. Transl. Med., 11 Clemons, 2010, Culturing and egg collection of Aedes aegypti, Cold Spring Harb Protoc., 5507, 10.1101/pdb.prot5507 Folmer, 1994, DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Mol. Mar. Biol. Biotechnol., 3, 294 Franz, 2015, Tissue barriers to arbovirus infection in mosquitoes, Viruses, 7, 3741, 10.3390/v7072795 Goo, 2017, A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis, PLoS. Pathog., 13, 10.1371/journal.ppat.1006178 Guo, 2020, Potential vector competence of mosquitoes to transmit baiyangdian virus, a new Tembusu-related virus in China, Vector Borne Zoonotic Dis, 20, 541, 10.1089/vbz.2019.2523 Holland, 1982, Rapid evolution of RNA genomes, Science, 215, 1577, 10.1126/science.7041255 Huang, 2014, Flavivirus-mosquito interactions, Viruses, 6, 4703, 10.3390/v6114703 Khaklang, 2014, Species composition and blood meal analysis of mosquitoes collected from a tourist island, Koh Chang, Thailand, J. Vector. Ecol., 39, 448, 10.1111/jvec.12122 Khoo, 2010, The RNA interference pathway affects midgut infection- and escape barriers for Sindbis virus in Aedes aegypti, BMC. Microbiol., 10, 130, 10.1186/1471-2180-10-130 Lei, 2017, The genetic characteristics and evolution of Tembusu virus, Vet. Microbiol., 201, 32, 10.1016/j.vetmic.2017.01.003 Li, 2013, Duck Tembusu virus exhibits neurovirulence in BALB/c mice, Virol. J., 10, 260, 10.1186/1743-422X-10-260 Li, 2015, Airborne transmission of a novel Tembusu virus in ducks, J. Clin. Microbiol., 53, 2734, 10.1128/JCM.00770-15 Liu, 2017, Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes, Nature, 545, 482, 10.1038/nature22365 Mukhopadhyay, 2005, A structural perspective of the flavivirus life cycle, Nat. Rev. Microbiol., 3, 13, 10.1038/nrmicro1067 Muller, 2013, The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker, Antiviral. Res., 98, 192, 10.1016/j.antiviral.2013.03.008 Ninvilai, 2020, Pathogenesis of Thai duck Tembusu virus in Cherry Valley ducks: The effect of age on susceptibility to infection, Vet. Microbiol., 243, 10.1016/j.vetmic.2020.108636 Ninvilai, 2019, Genetic characterization of duck Tembusu virus in Thailand, 2015-2017: Identification of a novel cluster, Transbound. Emerg. Dis, 66, 1982, 10.1111/tbed.13230 O'Guinn, 2013, Field detection of Tembusu virus in Western Thailand by RT-PCR and vector competence determination of select Culex mosquitoes for transmission of the virus, Am. J. Trop. Med. Hyg., 89, 1023, 10.4269/ajtmh.13-0160 Ponlawat, 2005, Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand, J. Med. Entomol., 42, 844, 10.1093/jmedent/42.5.844 Reed, 1938, A simple method of estimating fifty per cent endpoints, Am. J. Epidemiol., 27, 493, 10.1093/oxfordjournals.aje.a118408 Roundy, 2017, Variation in Aedes aegypti mosquito competence for Zika virus transmission, Emerg. Infect. Dis., 23, 625, 10.3201/eid2304.161484 Rueda, 2004, Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with Dengue virus transmission, Zootaxa, 589 Sanisuriwong, 2021, Vector competence of Culex tritaeniorhynchus and Culex quinquefasciatus (Diptera: Culicidae) for duck Tembusu virus transmission, Acta. Trop., 214, 10.1016/j.actatropica.2020.105785 Sanisuriwong, 2020, Duck Tembusu virus detection and characterization from mosquitoes in duck farms, Thailand, Transbound Emerg Dis, 67, 1082, 10.1111/tbed.13474 Sim, 2014, Mosquito immunity against arboviruses, Viruses, 6, 4479, 10.3390/v6114479 Smith, 2012, An update on mosquito cell expressed dengue virus receptor proteins, Insect. Mol. Biol., 21, 1, 10.1111/j.1365-2583.2011.01098.x Su, 2011, Duck egg-drop syndrome caused by BYD virus, a new Tembusu-related flavivirus, PloS One, 6, e18106, 10.1371/journal.pone.0018106 Takken, 2013, Host preferences of blood-feeding mosquitoes, Annu. Rev. Entomol., 58, 433, 10.1146/annurev-ento-120811-153618 Tang, 2015, Isolation and genetic characterization of a Tembusu virus strain isolated from mosquitoes in Shandong, China. Transbound. Emerg. Dis., 62, 209, 10.1111/tbed.12111 Tang, 2013, Tembusu virus in human, China. Transbound. Emerg. Dis., 60, 193, 10.1111/tbed.12085 Thontiravong, 2015, Tembusu-related flavivirus in ducks, Thailand. Emerg. Infect. Dis., 21, 2164, 10.3201/eid2112.150600 Ti, 2016, Duck Tembusu virus exhibits pathogenicity to kunming mice by intracerebral inoculation, Front. Microbiol., 7, 190, 10.3389/fmicb.2016.00190 Tunterak, 2020, Evaluation of host systems for efficient isolation and propagation of duck Tembusu virus, Avian. Pathol., 1 Weaver, 2004, Transmission cycles, host range, evolution and emergence of arboviral disease, Nat. Rev. Microbiol., 2, 789, 10.1038/nrmicro1006 Welte, 2011, Immune responses to an attenuated West Nile virus NS4B-P38G mutant strain, Vaccine, 29, 4853, 10.1016/j.vaccine.2011.04.057 Xia, 2018, An evolutionary NS1 mutation enhances Zika virus evasion of host interferon induction, Nat. Commun., 9, 414, 10.1038/s41467-017-02816-2 Xie, 2015, A West Nile virus NS4B-P38G mutant strain induces cell intrinsic innate cytokine responses in human monocytic and macrophage cells, Vaccine, 33, 869, 10.1016/j.vaccine.2014.12.056 Yan, 2011, Establishing a TaqMan-based real-time PCR assay for the rapid detection and quantification of the newly emerged duck Tembusu virus, Virol. J., 8, 464, 10.1186/1743-422X-8-464 Yurayart, 2020, Pathogenesis of Thai duck Tembusu virus in BALB/c mice: descending infection and neuroinvasive virulence, Transbound. Emerg. Dis. Zhang, 2017, Structures and functions of the envelope glycoprotein in flavivirus infections, Viruses, 9, 338, 10.3390/v9110338 Zmurko, 2015, Flaviviral NS4b, chameleon and jack-in-the-box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention, Rev. Med. Virol., 25, 205, 10.1002/rmv.1835 Zou, 2014, Dimerization of flavivirus NS4B protein, J. Virol., 88, 3379, 10.1128/JVI.02782-13