Interactions of Asian mineral dust with Indian summer monsoon: Recent advances and challenges

Earth-Science Reviews - Tập 215 - Trang 103562 - 2021
Qinjian Jin1, Jiangfeng Wei2, William K.M. Lau3, Bing Pu1, Chien Wang4
1Department of Geography and Atmospheric Science, University of Kansas, Lawrence, KS, USA
2Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Research Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
3Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
4Laboratoire d’Aerologie, CNRS/UPS, Toulouse, France

Tài liệu tham khảo

Adebiyi, 2020, Climate models miss most of the coarse dust in the atmosphere, Sci. Adv., 6, 10.1126/sciadv.aaz9507 Alizadeh Choobari, 2012, Feedback between windblown dust and planetary boundary-layer characteristics: Sensitivity to boundary and surface layer parameterizations, Atmos. Environ., 61, 294, 10.1016/j.atmosenv.2012.07.038 Andreae, 2004, Smoking rain clouds over the Amazon, Science, 303, 1337, 10.1126/science.1092779 Anisimov, 2018, Observations and cloud-resolving modeling of haboob dust storms over the Arabian Peninsula, J. Geophys. Res.-Atmos., 123, 12,147, 10.1029/2018JD028486 Attada, 2018, The role of the Indian Summer Monsoon variability on Arabian Peninsula summer climate, Clim. Dyn., 52, 3389, 10.1007/s00382-018-4333-x Badarinath, 2010, Long-range transport of dust aerosols over the Arabian Sea and Indian region – a case study using satellite data and ground-based measurements, Glob. Planet. Chang., 72, 164, 10.1016/j.gloplacha.2010.02.003 Balkanski, 2007, Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81, 10.5194/acp-7-81-2007 Bangalath, 2016, Sensitivity of the middle East-North African tropical rainbelt to dust shortwave absorption: a high-resolution AGCM experiment, J. Clim., 29, 7103, 10.1175/JCLI-D-15-0827.1 Baustian, 2012, Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: a combined field and laboratory approach, J. Geophys. Res.-Atmos., 117, 10.1029/2011JD016784 Blandford, 1886, Rainfall of India Bollasina, 2011, Anthropogenic aerosols and the weakening of the South Asian summer monsoon, Science, 334, 502, 10.1126/science.1204994 Chang, 2006, The Asian winter monsoon, 89 Charney, 1967 Chen, 2008, Interaction between aerosols and clouds: current understanding, 231 Chen, 2018, Quantifying contributions of natural and anthropogenic dust emission from different climatic regions, Atmos. Environ., 191, 94, 10.1016/j.atmosenv.2018.07.043 Chen, 2019, Estimations of indirect and direct anthropogenic dust emission at the global scale, Atmos. Environ., 200, 50, 10.1016/j.atmosenv.2018.11.063 Chiang, 2012, Extratropical cooling, interhemispheric thermal gradients, and tropical climate change, Annu. Rev. Earth Planet. Sci., 40, 383, 10.1146/annurev-earth-042711-105545 Claquin, 1999, Modeling the mineralogy of atmospheric dust sources, J. Geophys. Res.-Atmos., 104, 22243, 10.1029/1999JD900416 Colarco, 2014, Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: sensitivity to dust particle shape and refractive index, J. Geophys. Res.-Atmos., 119, 753, 10.1002/2013JD020046 Creamean, 2013, Dust and biological aerosols from the Sahara and Asia influence precipitation in the western US, Science, 339, 1572, 10.1126/science.1227279 Cuevas Agulló, 2013 Cziczo, 2013, Clarifying the dominant sources and mechanisms of cirrus cloud formation, Science, 340, 1320, 10.1126/science.1234145 Das, 2015, Dust aerosol feedback on the Indian summer monsoon: sensitivity to absorption property, J. Geophys. Res.-Atmos., 120, 9642, 10.1002/2015JD023589 Das, 2020, Investigating the relative responses of regional monsoon dynamics to snow darkening and direct radiative effects of dust and carbonaceous aerosols over the Indian subcontinent, Clim. Dyn., 55, 1011, 10.1007/s00382-020-05307-1 Dave, 2017, Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall, Sci. Rep., 7, 17347, 10.1038/s41598-017-17599-1 De, 2015, Does the modification in “critical relative humidity” of NCEP CFSv2 dictate Indian mean summer monsoon forecast? Evaluation through thermodynamical and dynamical aspects, Clim. Dyn., 46, 1197, 10.1007/s00382-015-2640-z DeMott, 2003, African dust aerosols as atmospheric ice nuclei, Geophys. Res. Lett., 30, 10.1029/2003GL017410 Denjean, 2016, Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean, Atmos. Chem. Phys., 16, 1081, 10.5194/acp-16-1081-2016 Denjean, 2016, Size distribution and optical properties of African mineral dust after intercontinental transport, J. Geophys. Res.-Atmos., 121, 7117, 10.1002/2016JD024783 D'Errico, 2015, Indian monsoon and the elevated-heat-pump mechanism in a coupled aerosol-climate model, J. Geophys. Res.-Atmos., 120, 8712, 10.1002/2015JD023346 Di Biagio, 2019, Complex refractive indices and single scattering albedo of global dust aerosols in the shortwave spectrum and relationship to iron content and size, Atmos. Chem. Phys. Discuss., 1 Di Biagio, 2019, Complex refractive indices and single-scattering albedo of global dust aerosols in the shortwave spectrum and relationship to size and iron content, Atmos. Chem. Phys., 19, 15503, 10.5194/acp-19-15503-2019 Dimri, 2016, Indian winter monsoon: present and past, Earth Sci. Rev., 163, 297, 10.1016/j.earscirev.2016.10.008 Duan, 2013, The Tibetan Plateau summer monsoon in the CMIP5 simulations, J. Clim., 26, 7747, 10.1175/JCLI-D-12-00685.1 Evan, 2018, Surface winds and dust biases in climate models, Geophys. Res. Lett., 45, 1079, 10.1002/2017GL076353 Evan, 2014, An analysis of aeolian dust in climate models, Geophys. Res. Lett., 41, 5996, 10.1002/2014GL060545 Evan, 2016, The past, present and future of African dust, Nature, 531, 493, 10.1038/nature17149 Evans, 2020, Linear relation between shifting ITCZ and dust hemispheric asymmetry, Geophys. Res. Lett., 47, 10.1029/2020GL090499 Feng, 2013, Expansion of global drylands under a warming climate, Atmos. Chem. Phys., 13, 10081, 10.5194/acp-13-10081-2013 Flanner, 2009, Springtime warming and reduced snow cover from carbonaceous particles, Atmos. Chem. Phys., 9, 2481, 10.5194/acp-9-2481-2009 Fountoukis, 2018, Simulating global horizontal irradiance in the Arabian Peninsula: sensitivity to explicit treatment of aerosols, Sol. Energy, 163, 347, 10.1016/j.solener.2018.02.001 Francis, 2019, Cyclogenesis and density currents in the Middle East and the associated dust activity in September 2015, Geosciences, 9, 10.3390/geosciences9090376 Friedman, 2013, Interhemispheric temperature asymmetry over the twentieth century and in future projections, J. Clim., 26, 5419, 10.1175/JCLI-D-12-00525.1 Gadgil, 2003, The Indian monsoon and its variability, Annu. Rev. Earth Planet. Sci., 31, 429, 10.1146/annurev.earth.31.100901.141251 Gadgil, 2018, The monsoon system: land–sea breeze or the ITCZ?, J. Earth Syst. Sci., 127, 1, 10.1007/s12040-017-0916-x Gandham, 2020, Major changes in extreme dust events dynamics over the Arabian Peninsula during 2003–2017 driven by atmospheric conditions, J. Geophys. Res.-Atmos., 125, 1, 10.1029/2020JD032931 Gautam, 2013, Satellite observations of desert dust-induced Himalayan snow darkening, Geophys. Res. Lett., 40, 988, 10.1002/grl.50226 Gaybullaev, 2012, Changes in water volume of the Aral Sea after 1960, Appl Water Sci, 2, 285, 10.1007/s13201-012-0048-z Geen, 2020, Monsoons, ITCZs, and the concept of the global monsoon, Rev. Geophys., 58, 10.1029/2020RG000700 Gerber, 2012, Drizzle rates and large sea-salt nuclei in small cumulus, J. Geophys. Res.-Atmos., 117, 10.1029/2011JD016249 Gill, 1980, Some simple solutions for heat-induced tropical circulation, Q. J. R. Meteorol. Soc., 106, 447, 10.1002/qj.49710644905 Ginoux, 2001, Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res.-Atmos., 106, 20255, 10.1029/2000JD000053 Ginoux, 2012, Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products, Rev. Geophys., 50, 10.1029/2012RG000388 Goswami, 2005, South Asian monsoon, 19 Green, 2020, The Earth surface mineral dust source investigation: an Earth science imaging spectroscopy mission Grini, 2005, Model simulations of dust sources and transport in the global atmosphere: effects of soil erodibility and wind speed variability, J. Geophys. Res.-Atmos., 110, 10.1029/2004JD005037 Gu, 2015, A GCM investigation of dust aerosol impact on the regional climate of North Africa and South/East Asia, Clim. Dyn., 46, 2353, 10.1007/s00382-015-2706-y Halley, 1753, An historical account of the trade winds, and monsoons, observable in the seas between and near the Tropicks, with an attempt to assign the physical cause of the said winds, Philos. Trans. R. Soc. Lond., 16, 153 Hari, 2020, Northward propagation of the intertropical convergence zone and strengthening of Indian summer monsoon rainfall, Geophys. Res. Lett., 47, 10.1029/2020GL089823 Hazra, 2013, Role of interactions between aerosol radiative effect, dynamics, and cloud microphysics on transitions of monsoon intraseasonal oscillations, J. Atmos. Sci., 70, 2073, 10.1175/JAS-D-12-0179.1 Hazra, 2013, Impact of aerosols on tropical cyclones: an investigation using convection-permitting model simulation, J. Geophys. Res.-Atmos., 118, 7157, 10.1002/jgrd.50546 Hazra, 2015, Impact of revised cloud microphysical scheme in CFSv2 on the simulation of the Indian summer monsoon, Int. J. Climatol., 35, 4738, 10.1002/joc.4320 Healy, 2014, Single particle diversity and mixing state measurements, Atmos. Chem. Phys., 14, 6289, 10.5194/acp-14-6289-2014 Hill, 2019, Theories for past and future monsoon rainfall changes, Curr. Clim. Change Rep., 5, 160, 10.1007/s40641-019-00137-8 Hsu, 2012, Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010, Atmos. Chem. Phys., 12, 8037, 10.5194/acp-12-8037-2012 Hsu, 2013, Future change of the global monsoon revealed from 19 CMIP5 models, J. Geophys. Res.-Atmos., 118, 1247, 10.1002/jgrd.50145 Hu, 2019, Modeling the contributions of Northern Hemisphere dust sources to dust outflow from East Asia, Atmos. Environ., 202, 234, 10.1016/j.atmosenv.2019.01.022 Hu, 2020, Modeling dust sources, transport, and radiative effects at different altitudes over the Tibetan Plateau, Atmos. Chem. Phys., 20, 1507, 10.5194/acp-20-1507-2020 Huang, 2015, Detection of anthropogenic dust using CALIPSO lidar measurements, Atmos. Chem. Phys., 15, 11653, 10.5194/acp-15-11653-2015 Huang, 2016, Accelerated dryland expansion under climate change, Nat. Clim. Chang., 6, 166, 10.1038/nclimate2837 Jha, 2018, Sensitivity studies on the impact of dust and aerosol pollution acting as cloud nucleating aerosol on orographic precipitation in the Colorado River Basin, Adv. Meteorol., 2018, 10.1155/2018/3041893 Jin, 2015 Jin, 2020, Long-term trends of high aerosol pollution events and their climatic impacts in North America using multiple satellite retrievals and modern-era retrospective analysis for research and applications version 2, J. Geophys. Res.-Atmos., 125, 1, 10.1029/2019JD031137 Jin, 2017, A revival of Indian summer monsoon rainfall since 2002, Nat. Clim. Chang., 7, 587, 10.1038/nclimate3348 Jin, 2018, The greening of Northwest Indian subcontinent and reduction of dust abundance resulting from Indian summer monsoon revival, Sci. Rep., 8 Jin, 2014, Positive response of Indian summer rainfall to Middle East dust, Geophys. Res. Lett., 41, 4068, 10.1002/2014GL059980 Jin, 2015, Consistent response of Indian summer monsoon to Middle East dust in observations and simulations, Atmos. Chem. Phys., 15, 9897, 10.5194/acp-15-9897-2015 Jin, 2016, High sensitivity of Indian summer monsoon to Middle East dust absorptive properties, Sci. Rep., 6, 30690, 10.1038/srep30690 Jin, 2016, Seasonal responses of indian summer monsoon to dust aerosols in the Middle East, India, and China, J. Clim., 29, 632, 10.1175/JCLI-D-15-0622.1 Jin, 2017, Irrigation-induced environmental changes around the aral sea: an integrated view from multiple satellite observations, Remote Sens., 9 Jin, 2018, High summertime aerosol loadings over the Arabian Sea and their transport pathways, J. Geophys. Res.-Atmos., 123, 10568, 10.1029/2018JD028588 Kamphus, 2010, Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6), Atmos. Chem. Phys., 10, 8077, 10.5194/acp-10-8077-2010 Karydis, 2011, On the effect of dust particles on global cloud condensation nuclei and cloud droplet number, J. Geophys. Res.-Atmos., 116, 10.1029/2011JD016283 Karydis, 2017, Global impact of mineral dust on cloud droplet number concentration, Atmos. Chem. Phys., 17, 10.5194/acp-17-5601-2017 Kaskaoutis, 2016, The Caspian Sea–Hindu Kush Index (CasHKI): a regulatory factor for dust activity over southwest Asia, Glob. Planet. Chang., 137, 10, 10.1016/j.gloplacha.2015.12.011 Kaskaoutis, 2018, Impact of atmospheric circulation types on southwest Asian dust and Indian summer monsoon rainfall, Atmos. Res., 201, 189, 10.1016/j.atmosres.2017.11.002 KAUST, 2018, Indian summer monsoon keeps Arabian Peninsula hot and dry Kelly, 2007, Influence of dust composition on cloud droplet formation, Atmos. Environ., 41, 2904, 10.1016/j.atmosenv.2006.12.008 Kim, 2008, Distribution and direct radiative forcing of carbonaceous and sulfate aerosols in an interactive size-resolving aerosol–climate model, J. Geophys. Res., 113, 10.1029/2007JD009756 Kim, 2013, The effect of the dynamic surface bareness on dust source function, emission, and distribution, J. Geophys. Res.-Atmos., 118, 871, 10.1029/2012JD017907 Kim, 2016, Amplification of ENSO effects on Indian summer monsoon by absorbing aerosols, Clim. Dyn., 46, 2657, 10.1007/s00382-015-2722-y Kim, 2017, Development of high-resolution dynamic dust source function – a case study with a strong dust storm in a regional model, Atmos. Environ., 159, 11, 10.1016/j.atmosenv.2017.03.045 Kim, 2018, The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm, Atmos. Meas. Tech., 11, 6107, 10.5194/amt-11-6107-2018 Klingmüller, 2016, Aerosol optical depth trend over the Middle East, Atmos. Chem. Phys., 16, 5063, 10.5194/acp-16-5063-2016 Kok, 2011, A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle, Proc. Natl. Acad. Sci. U. S. A., 108, 1016, 10.1073/pnas.1014798108 Kok, 2014, An improved dust emission model – Part 2: evaluation in the Community Earth System Model, with implications for the use of dust source functions, Atmos. Chem. Phys., 14, 13043, 10.5194/acp-14-13043-2014 Kok, 2014, An improved dust emission model – Part 1: model description and comparison against measurements, Atmos. Chem. Phys., 14, 13023, 10.5194/acp-14-13023-2014 Kok, 2017, Smaller desert dust cooling effect estimated from analysis of dust size and abundance, Nat. Geosci., 10, 274, 10.1038/ngeo2912 Kok, 2018, Global and regional importance of the direct dust-climate feedback, Nat. Commun., 9, 241, 10.1038/s41467-017-02620-y Konwar, 2012, Aerosol control on depth of warm rain in convective clouds, J. Geophys. Res.-Atmos., 117, 10.1029/2012JD017585 Koven, 2006, Inferring dust composition from wavelength-dependent absorption in Aerosol Robotic Network (AERONET) data, J. Geophys. Res.-Atmos., 111, 10.1029/2005JD006678 Kovilakam, 2016, Confronting the “Indian summer monsoon response to black carbon aerosol” with the uncertainty in its radiative forcing and beyond, J. Geophys. Res.-Atmos., 121, 7833, 10.1002/2016JD024866 Kuhlmann, 2010, How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data, Atmos. Chem. Phys., 10, 4673, 10.5194/acp-10-4673-2010 Kumar, 2013, Role of interaction between dynamics, thermodynamics and cloud microphysics on summer monsoon precipitating clouds over the Myanmar Coast and the Western Ghats, Clim. Dyn., 43, 911, 10.1007/s00382-013-1909-3 Kumar, 2020, Geochemical characterization of modern aeolian dust over the Northeastern Arabian Sea: implication for dust transport in the Arabian Sea, Sci. Total Environ., 729, 138576, 10.1016/j.scitotenv.2020.138576 Kumari, 2010, Seminal role of clouds on solar dimming over the Indian monsoon region, Geophys. Res. Lett., 37 Lafon, 2006, Characterization of iron oxides in mineral dust aerosols: implications for light absorption, J. Geophys. Res.-Atmos., 111, 10.1029/2005JD007016 Lau, 2016, The aerosol-monsoon climate system of Asia: a new paradigm, J. Meteorol. Res., 30, 1, 10.1007/s13351-015-5999-1 Lau, 2006, Observational relationships between aerosol and Asian monsoon rainfall, and circulation, Geophys. Res. Lett., 33, 10.1029/2006GL027546 Lau, 2010, Fingerprinting the impacts of aerosols on long-term trends of the Indian summer monsoon regional rainfall, Geophys. Res. Lett., 37, 10.1029/2010GL043255 Lau, 2011, Comment on '"Elevated heat pump' hypothesis for the aerosol-monsoon hydroclimate link: 'Grounded' in observations?" by S. Nigam and M. Bollasina, J. Geophys. Res.-Atmos., 116, 10.1029/2010JD014800 Lau, 2017, Competing influences of greenhouse warming and aerosols on Asian Summer Monsoon circulation and rainfall, Asia-Pac. J. Atmos. Sci., 53, 181, 10.1007/s13143-017-0033-4 Lau, 2018, Impact of snow-darkening by deposition of light-absorbing aerosols on snow cover in the Himalaya-Tibetan-Plateau and influence on the Asian Summer monsoon: a possible mechanism for the Blanford Hypothesis, Atmosphere (Basel), 9, 438, 10.3390/atmos9110438 Lau, 2006, Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau, Clim. Dyn., 26, 855, 10.1007/s00382-006-0114-z Lau, 2008, The joint aerosol–monsoon experiment: a new challenge for monsoon climate research, Bull. Am. Meteorol. Soc., 89, 369, 10.1175/BAMS-89-3-369 Lau, 2009, Possible influences of air pollution, dust and sandstorms on the Indian monsoon, WMO Bull., 58, 22 Lau, 2010, Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols, Environ. Res. Lett., 5, 10.1088/1748-9326/5/2/025204 Lau, 2016, Impacts of aerosol–monsoon interaction on rainfall and circulation over Northern India and the Himalaya Foothills, Clim. Dyn., 49, 1945, 10.1007/s00382-016-3430-y Lau, 2018, Origin, maintenance and variability of the Asian Tropopause Aerosol Layer (ATAL): the roles of monsoon dynamics, Sci. Rep., 8, 3960, 10.1038/s41598-018-22267-z Lau, 2020, Impact of dust-cloud-radiation-precipitation dynamical feedback on subseasonal-to-seasonal variability of the asian summer monsoon in global variable-resolution simulations with MPAS-CAM5, Front. Earth Sci., 8, 10.3389/feart.2020.00226 Lee, 2014, Future change of global monsoon in the CMIP5, Clim. Dyn., 42, 101, 10.1007/s00382-012-1564-0 Lee, 2015, The response of the South Asian summer monsoon to temporal and spatial variations in absorbing aerosol radiative forcing, J. Clim., 28, 6626, 10.1175/JCLI-D-14-00609.1 Lee, 2013, Nonlinear effects of coexisting surface and atmospheric forcing of anthropogenic absorbing aerosols: impact on the South Asian monsoon onset, J. Clim., 26, 5594, 10.1175/JCLI-D-12-00741.1 Lee, 2016, Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California, Atmos. Chem. Phys., 16, 8353, 10.5194/acp-16-8353-2016 Lei, 2014, Observed characteristics of dust storm events over the western United States using meteorological, satellite, and air quality measurements, Atmos. Chem. Phys., 14, 7847, 10.5194/acp-14-7847-2014 Léon, 2003, Mineral dust sources in the surroundings of the north Indian Ocean, Geophys. Res. Lett., 30, 10.1029/2002GL016690 Levin, 2008 Li, 2002, Winter to summer monsoon variation of aerosol optical depth over the tropical Indian Ocean, J. Geophys. Res.-Atmos., 107, 10.1029/2001JD000949 Li, 2009, Observation of nitrate coatings on atmospheric mineral dust particles, Atmos. Chem. Phys., 9, 1863, 10.5194/acp-9-1863-2009 Li, 2018, The dust direct radiative impact and its sensitivity to the land surface state and key minerals in the WRF-Chem-DuMo model: a case study of dust storms in Central Asia, J. Geophys. Res.-Atmos., 123, 4564, 10.1029/2017JD027667 Li, 2010, Transport of patagonian dust to Antarctica, J. Geophys. Res., 115, 10.1029/2009JD012356 Li, 2016, Aerosol and monsoon climate interactions over Asia, Rev. Geophys., 54, 866, 10.1002/2015RG000500 Li, 2020, Quantifying the range of the dust direct radiative effect due to source mineralogy uncertainty, Atmos. Chem. Phys. Discuss., 1 Liao, 1998, Radiative forcing by mineral dust aerosols: sensitivity to key variables, J. Geophys. Res.-Atmos., 103, 31637, 10.1029/1998JD200036 Lin, 2018, Impact of model resolution on simulating the water vapor transport through the central Himalayas: implication for models’ wet bias over the Tibetan Plateau, Clim. Dyn., 51, 3195, 10.1007/s00382-018-4074-x Liu, 2012, Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5, Geosci. Model Dev., 5, 709, 10.5194/gmd-5-709-2012 Lohmann, 2005, Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715, 10.5194/acp-5-715-2005 Mahowald, 2003, A less dusty future?, Geophys. Res. Lett., 30, 10.1029/2003GL017880 Mahowald, 2010, Observed 20th century desert dust variability: impact on climate and biogeochemistry, Atmos. Chem. Phys., 10, 10875, 10.5194/acp-10-10875-2010 Mahowald, 2014, The size distribution of desert dust aerosols and its impact on the Earth system, Aeolian Res., 15, 53, 10.1016/j.aeolia.2013.09.002 Maring, 2003, Mineral dust aerosol size distribution change during atmospheric transport, J. Geophys. Res., 108, 10.1029/2002JD002536 Matsui, 2018, Black carbon radiative effects highly sensitive to emitted particle size when resolving mixing-state diversity, Nat. Commun., 9, 3446, 10.1038/s41467-018-05635-1 Matsuki, 2010, Cloud processing of mineral dust: direct comparison of cloud residual and clear sky particles during AMMA aircraft campaign in summer 2006, Atmos. Chem. Phys., 10, 1057, 10.5194/acp-10-1057-2010 Matsuno, 1966, Quasi-geostrophic motions in the equatorial area, J. Meteorol. Soc. Jpn. Ser. II, 44, 25, 10.2151/jmsj1965.44.1_25 Meehl, 2008, Effects of black carbon aerosols on the Indian monsoon, J. Clim., 21, 2869, 10.1175/2007JCLI1777.1 Miller, 2006, Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model, J. Geophys. Res., 111, 10.1029/2005JD005796 Moosmüller, 2012, Single scattering albedo of fine mineral dust aerosols controlled by iron concentration, J. Geophys. Res.-Atmos., 117, 10.1029/2011JD016909 Mujumdar, 2012, The Asian summer monsoon response to the La Niña event of 2010, Meteorol. Appl., 19, 216, 10.1002/met.1301 Murray, 2012, Ice nucleation by particles immersed in supercooled cloud droplets, Chem. Soc. Rev., 41, 6519, 10.1039/c2cs35200a Nenes, 2014, Mineral dust and its microphysical interactions with clouds, 287 Nigam, 2010, "Elevated heat pump" hypothesis for the aerosol-monsoon hydroclimate link: "Grounded" in observations?, J. Geophys. Res.-Atmos., 115, 10.1029/2009JD013800 Nigam, 2011, Reply to comment by K. M. Lau and K. M. Kim on '"Elevated heat pump' hypothesis for the aerosol-monsoon hydroclimate link: 'Grounded' in observations?", J. Geophys. Res.-Atmos., 116, 10.1029/2010JD015246 Parajuli, 2018, Projected changes in dust emissions and regional air quality due to the shrinking Salton Sea, Aeolian Res., 33, 82, 10.1016/j.aeolia.2018.05.004 Patel, 2019, Strengthened indian summer monsoon precipitation susceptibility linked to dust-induced ice cloud modification, Geophys. Res. Lett., 46, 8431, 10.1029/2018GL081634 Pekel, 2016, High-resolution mapping of global surface water and its long-term changes, Nature, 540, 418, 10.1038/nature20584 Perlwitz, 2015, Predicting the mineral composition of dust aerosols – Part 1: representing key processes, Atmos. Chem. Phys., 15, 11593, 10.5194/acp-15-11593-2015 Perlwitz, 2015, Predicting the mineral composition of dust aerosols – Part 2: model evaluation and identification of key processes with observations, Atmos. Chem. Phys., 15, 11629, 10.5194/acp-15-11629-2015 Pratt, 2009, In situ detection of biological particles in cloud ice-crystals, Nat. Geosci., 2, 398, 10.1038/ngeo521 Preethi, 2016, Recent trends and tele-connections among South and East Asian summer monsoons in a warming environment, Clim. Dyn., 48, 2489, 10.1007/s00382-016-3218-0 Preethi, 2017, Variability and teleconnections of South and East Asian summer monsoons in present and future projections of CMIP5 climate models, Asia-Pac. J. Atmos. Sci., 53, 305, 10.1007/s13143-017-0034-3 Prenni, 2009, Relative roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon basin, Nat. Geosci., 2, 402, 10.1038/ngeo517 Prospero, 2013, Understanding the transport and impact of African dust on the Caribbean Basin, Bull. Am. Meteorol. Soc., 94, 1329, 10.1175/BAMS-D-12-00142.1 Prospero, 2002, Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product, Rev. Geophys., 40, 10.1029/2000RG000095 Provencal, 2017, AOD distributions and trends of major aerosol species over a selection of the world's most populated cities based on the 1st Version of NASA's MERRA Aerosol Reanalysis, Urban Clim., 20, 168, 10.1016/j.uclim.2017.04.001 Pu, 2016, The impact of the Pacific Decadal Oscillation on springtime dust activity in Syria, Atmos. Chem. Phys., 16, 13431, 10.5194/acp-16-13431-2016 Pu, 2017, Projection of American dustiness in the late 21(st) century due to climate change, Sci. Rep., 7, 10.1038/s41598-017-05431-9 Pu, 2018, Climatic factors contributing to long-term variations in surface fine dust concentration in the United States, Atmos. Chem. Phys., 18, 4201, 10.5194/acp-18-4201-2018 Pu, 2019, Seasonal prediction potential for springtime dustiness in the United States, Geophys. Res. Lett., 46, 9163, 10.1029/2019GL083703 Pu, 2020, Retrieving the global distribution of the threshold of wind erosion from satellite data and implementing it into the Geophysical Fluid Dynamics Laboratory land–atmosphere model (GFDL AM4.0/LM4.0), Atmos. Chem. Phys., 20, 55, 10.5194/acp-20-55-2020 Qian, 2014, Light-absorbing particles in snow and ice: measurement and modeling of climatic and hydrological impact, Adv. Atmos. Sci., 32, 64, 10.1007/s00376-014-0010-0 Rahimi, 2019, Quantifying snow darkening and atmospheric radiative effects of black carbon and dust on the South Asian monsoon and hydrological cycle: experiments using variable-resolution CESM, Atmos. Chem. Phys., 19, 12025, 10.5194/acp-19-12025-2019 Rahul, 2008, Aerosol optical depth variability over Arabian Sea during drought and normal years of Indian monsoon, Geophys. Res. Lett., 35, 10.1029/2008GL035573 Rajeevan, 2010, Active and break spells of the Indian summer monsoon, J. Earth Syst. Sci., 119, 229, 10.1007/s12040-010-0019-4 Ramage, 1971, Monsoon meteorology Ramanathan, 2005, Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle, Proc. Natl. Acad. Sci. U. S. A., 102, 5326, 10.1073/pnas.0500656102 Ramaswamy, 2017, Mid-troposphere transport of Middle-East dust over the Arabian Sea and its effect on rainwater composition and sensitive ecosystems over India, Sci. Rep., 7, 13676, 10.1038/s41598-017-13652-1 Randel, 2010, Asian monsoon transport of pollution to the stratosphere, Science, 328, 611, 10.1126/science.1182274 Rao, 1976, Vols. 366, 379 Rashki, 2019, Effects of Monsoon, Shamal and Levar winds on dust accumulation over the Arabian Sea during summer – The July 2016 case, Aeolian Res., 36, 27, 10.1016/j.aeolia.2018.11.002 Ratnam, 2014, Solar cycle effects on Indian summer monsoon dynamics, J. Atmos. Sol. Terr. Phys., 121, 145, 10.1016/j.jastp.2014.06.012 Reicher, 2019, Size-dependent ice nucleation by airborne particles during dust events in the eastern Mediterranean, Atmos. Chem. Phys., 19, 11143, 10.5194/acp-19-11143-2019 Riehl, 1954 Riehl, 1979 Riemer, 2013, Quantifying aerosol mixing state with entropy and diversity measures, Atmos. Chem. Phys., 13, 11423, 10.5194/acp-13-11423-2013 Riemer, 2019, Aerosol mixing state: measurements, modeling, and impacts, Rev. Geophys., 57, 187, 10.1029/2018RG000615 Rodwell, 1996, Monsoons and the dynamics of deserts, Q. J. R. Meteorol. Soc., 122, 1385, 10.1002/qj.49712253408 Rodwell, 2001, Subtropical anticyclones and summer monsoons, J. Clim., 14, 3192, 10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2 Rosenfeld, 2006, Aerosols, clouds, and climate, Science, 312, 1323, 10.1126/science.1128972 Rosenfeld, 2001, Desert dust suppressing precipitation: a possible desertification feedback loop, Vol. 98, 5975 Rosenfeld, 2008, Flood or drought: how do aerosols affect precipitation?, Science, 321, 1309, 10.1126/science.1160606 Roxy, 2015, Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient, Nat. Commun., 6, 10.1038/ncomms8423 Saha, 2019, Unraveling the mystery of indian summer monsoon prediction: improved estimate of predictability limit, J. Geophys. Res.-Atmos., 4, 1962, 10.1029/2018JD030082 Saha, 2020, Reply to Comment by ET Swenson, D. Das, and J. Shukla on “Unraveling the mystery of indian summer monsoon prediction: improved estimate of predictability limit”, J. Geophys. Res.-Atmos., 125, 10.1029/2020JD033242 Sanap, 2015, The effect of absorbing aerosols on Indian monsoon circulation and rainfall: a review, Atmos. Res., 164-165, 318, 10.1016/j.atmosres.2015.06.002 Sand, 2021, Aerosol absorption in global models from AeroCom Phase III, Atmospheric Chemistry and Physics Discussions, 1 Sarangi, 2020, Dust dominates high-altitude snow darkening and melt over high-mountain Asia, Nat. Clim. Chang., 10, 1045, 10.1038/s41558-020-00909-3 Scanza, 2015, Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing, Atmos. Chem. Phys., 15, 537, 10.5194/acp-15-537-2015 Schill, 2020, Widespread biomass burning smoke throughout the remote troposphere, Nat. Geosci., 13, 422, 10.1038/s41561-020-0586-1 Seinfeld, 2016 Shao, 2013, Recent global dust trend and connections to climate forcing, J. Geophys. Res.-Atmos., 118, 11,107, 10.1002/jgrd.50836 Sharma, 2017, Revisiting the observed correlation between weekly averaged Indian monsoon precipitation and Arabian Sea aerosol optical depth, Geophys. Res. Lett., 44, 10006, 10.1002/2017GL074373 Shi, 2019, Snow-darkening versus direct radiative effects of mineral dust aerosol on the Indian summer monsoon onset: role of temperature change over dust sources, Atmos. Chem. Phys., 19, 1605, 10.5194/acp-19-1605-2019 Sikka, 1980, On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon, Mon. Weather Rev., 108, 1840, 10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO;2 Simpson, 1921, The south-west monsoon, Q. J. R. Meteorol. Soc., 47, 151, 10.1002/qj.49704719901 Singh, 2007, Influence of different land-surface processes on Indian summer monsoon circulation, Nat. Hazards, 42, 423, 10.1007/s11069-006-9079-9 Singh, 2015, Impact of aerosols and cloud parameters on Indian summer monsoon rain at intraseasonal scale: a diagnostic study, Theor. Appl. Climatol., 127, 381, 10.1007/s00704-015-1640-6 Singh, 2019, Impact of West Asia, Tibetan Plateau and local dust emissions on intra-seasonal oscillations of the South Asian monsoon rainfall, Clim. Dyn., 53, 6569, 10.1007/s00382-019-04944-5 Smith, 2017, Sensitivity of the interannual variability of mineral aerosol simulations to meteorological forcing dataset, Atmos. Chem. Phys., 17, 3253, 10.5194/acp-17-3253-2017 Snider, 2016, Variation in global chemical composition of PM2.5: emerging results from SPARTAN, Atmos. Chem. Phys., 16, 9629, 10.5194/acp-16-9629-2016 Sokolik, 2001, Introduction to special section: outstanding problems in quantifying the radiative impacts of mineral dust, J. Geophys. Res.-Atmos., 106, 18015, 10.1029/2000JD900498 Solmon, 2015, Increasing Arabian dust activity and the Indian summer monsoon, Atmos. Chem. Phys., 15, 8051, 10.5194/acp-15-8051-2015 Stanhill, 2001, Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences, Agric. For. Meteorol., 107, 255, 10.1016/S0168-1923(00)00241-0 Strong, 2018, The climatological effect of saharan dust on global tropical cyclones in a fully coupled GCM, J. Geophys. Res.-Atmos., 123, 5538, 10.1029/2017JD027808 Stuut, 2014, The significance of particle size of long-range transported mineral dust, Past Glob. Changes Mag., 22, 14 Sullivan, 2009, Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles, Atmos. Chem. Phys., 9, 10.5194/acp-9-3303-2009 Sundaray, 2019, 1 Swenson, 2020, Comment on “Unraveling the mystery of Indian summer monsoon prediction: improved estimate of predictability limit” by Saha et al., J. Geophys. Res.-Atmos., 125, 10.1029/2020JD033037 Tandule, 2020, Decadal climatology of the spatial and vertical distributions of tropospheric aerosol over the Arabian Sea based on satellite observations, Int. J. Climatol., 40, 4676, 10.1002/joc.6482 Tang, 2018, Elevated heat pump effects of dust aerosol over Northwestern China during summer, Atmos. Res., 203, 95, 10.1016/j.atmosres.2017.12.004 Tegen, 1996, Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol, J. Geophys. Res.-Atmos., 101, 19237, 10.1029/95JD03610 Tian, 2018, Radiative absorption enhancement of dust mixed with anthropogenic pollution over East Asia, Atmos. Chem. Phys., 18, 7815, 10.5194/acp-18-7815-2018 Tindale, 1999, Aerosols over the Arabian Sea: atmospheric transport pathways and concentrations of dust and sea salt, Deep-Sea Res. II Top. Stud. Oceanogr., 46, 1577, 10.1016/S0967-0645(99)00036-3 Tobo, 2019, Glacially sourced dust as a potentially significant source of ice nucleating particles, Nat. Geosci., 12, 253, 10.1038/s41561-019-0314-x Trochkine, 2003, Mineral aerosol particles collected in Dunhuang, China, and their comparison with chemically modified particles collected over Japan, J. Geophys. Res.-Atmos., 108, 10.1029/2002JD003268 Tuccella, 2020, Direct radiative effect of absorbing aerosols: sensitivity to mixing state, brown carbon, and soil dust refractive index and shape, J. Geophys. Res.-Atmos., 125, 10.1029/2019JD030967 Tyrlis, 2012, The summer circulation over the eastern Mediterranean and the Middle East: influence of the South Asian monsoon, Clim. Dyn., 40, 1103, 10.1007/s00382-012-1528-4 Tyrlis, 2014, On the linkage between the Asian summer monsoon and tropopause fold activity over the eastern Mediterranean and the Middle East, J. Geophys. Res.-Atmos., 119, 3202, 10.1002/2013JD021113 van der Does, 2018, The mysterious long-range transport of giant mineral dust particles, Sci. Adv., 4, 10.1126/sciadv.aau2768 Vinoj, 2003, Measurements of aerosol optical depth over Arabian Sea during summer monsoon season, Geophys. Res. Lett., 30, 10.1029/2002GL016664 Vinoj, 2014, Short-term modulation of Indian summer monsoon rainfall by West Asian dust, Nat. Geosci., 7, 308, 10.1038/ngeo2107 Vukovic, 2014, Numerical simulation of "an American haboob", Atmos. Chem. Phys., 14, 3211, 10.5194/acp-14-3211-2014 Wang, 2002, Rainy season of the Asian-Pacific summer monsoon, J. Clim., 15, 386, 10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2 Wang, 2009, Particulate absorption of solar radiation: anthropogenic aerosols vs. dust, Atmos. Chem. Phys., 9, 3935, 10.5194/acp-9-3935-2009 Wang, 2009, Impact of anthropogenic aerosols on Indian summer monsoon, Geophys. Res. Lett., 36, 10.1029/2009GL040114 Wang, 2021, Monsoons Climate Change Assessment, Bulletin of the American Meteorological Society, 102, E1, 10.1175/BAMS-D-19-0335.1 Wang, 2011, Concept of global monsoon, 3 Wang, 2014, The global monsoon across timescales: coherent variability of regional monsoons, Clim. Past, 10, 2007, 10.5194/cp-10-2007-2014 Wang, 2017, The global monsoon across time scales: mechanisms and outstanding issues, Earth Sci. Rev., 174, 84, 10.1016/j.earscirev.2017.07.006 Wang, 2020, An overview of snow albedo sensitivity to black carbon contamination and snow grain properties based on experimental datasets across the northern hemisphere, Curr. Pollut. Rep., 1 Warren, 1980, A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols, J. Atmos. Sci., 37, 2734, 10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2 Webb, 2018, Quantifying anthropogenic dust emissions, Earth’s Future, 6, 286, 10.1002/2017EF000766 Webster, 1987, The elementary monsoon, 3 Wonsick, 2014, Investigation of the "elevated heat pump" hypothesis of the Asian monsoon using satellite observations, Atmos. Chem. Phys., 14, 8749, 10.5194/acp-14-8749-2014 Wu, 2012, Thermal controls on the Asian Summer Monsoon, Sci. Rep., 2, 10.1038/srep00404 Wu, 2017, Formation and variation of the atmospheric heat source over the Tibetan Plateau and its climate effects, Adv. Atmos. Sci., 34, 1169, 10.1007/s00376-017-7014-5 Xavier, 2007, An objective definition of the Indian summer monsoon season and a new perspective on the ENSO–monsoon relationship, Q. J. R. Meteorol. Soc., 133, 749, 10.1002/qj.45 Xi, 2015, Seasonal dynamics of threshold friction velocity and dust emission in Central Asia, J. Geophys. Res. Atmos., 120, 1536, 10.1002/2014JD022471 Xu, 2018, Tibetan plateau impacts on global dust transport in the upper troposphere, J. Clim., 31, 4745, 10.1175/JCLI-D-17-0313.1 Yasunari, 2015, Impact of snow darkening via dust, black carbon, and organic carbon on boreal spring climate in the Earth system, J. Geophys. Res.-Atmos., 120, 5485, 10.1002/2014JD022977 Yu, 2017, Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone, Proc. Natl. Acad. Sci. U. S. A., 114, 6972, 10.1073/pnas.1701170114 Yuan, 2019, Relationship between Asian monsoon strength and transport of surface aerosols to the Asian Tropopause Aerosol Layer (ATAL): interannual variability and decadal changes, Atmos. Chem. Phys., 19, 1901, 10.5194/acp-19-1901-2019 Zender, 2003, Spatial heterogeneity in aeolian erodibility: Uniform, topographic, geomorphic, and hydrologic hypotheses, J. Geophys. Res., 108, 10.1029/2002JD003039 Zender, 2004, Quantifying mineral dust mass budgets: terminology, constraints, and current estimates, EOS Trans. Am. Geophys. Union, 85, 509, 10.1029/2004EO480002 Zhai, 2019, Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology, Atmos. Chem. Phys., 19, 11031, 10.5194/acp-19-11031-2019 Zhang, 2010, A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products, Atmos. Chem. Phys., 10, 10949, 10.5194/acp-10-10949-2010 Zhang, 2019, Drivers of improved PM2.5 air quality in China from 2013 to 2017, Proc. Natl. Acad. Sci. U. S. A., 116, 24463, 10.1073/pnas.1907956116 Zhang, 2019, The weakening relationship between Eurasian spring snow cover and Indian summer monsoon rainfall, Sci. Adv., 5 Zhao, 2019, Ice nucleation by aerosols from anthropogenic pollution, Nat. Geosci., 12, 602, 10.1038/s41561-019-0389-4