Interactions between glucosinolate- and myrosinase-containing plants and the sawfly Athalia rosae

Springer Science and Business Media LLC - Tập 8 - Trang 121-134 - 2008
Caroline Müller1
1Department of Chemical Ecology, University of Bielefeld, Bielefeld, Germany

Tóm tắt

Several insects have specialised on using Brassicaceae as host plants. Therefore, they evolved metabolic pathways to cope with the defensive glucosinolate–myrosinase system of their diet. Larvae of the turnip sawfly, Athalia rosae L. (Hymenoptera: Tenthredinidae), incorporate various glucosinolates from their hosts into their haemolymph. The ability to sequester these metabolites makes A. rosae a useful model system to study mechanisms of glucosinolate metabolism in this species compared to other specialists, and to study effects of sawfly feeding on levels of glucosinolates and their hydrolysing enzymes in plants. The levels of plant metabolites might in turn directly affect the performance of the insect. On the one hand, costs for glucosinolate uptake and avoidance of myrosinase activity were postulated. On the other hand, sequestration of glucosinolates can be part of the insect’s defence against several predators. Here, the findings on glucosinolate metabolic pathways are compared between different herbivores and the sawfly. The impact of different glucosinolate levels and myrosinase activities on the performance of A. rosae is discussed. Furthermore, effects of feeding by A. rosae larvae on the chemical composition and enzyme activities of various Brassicaceae species are summarised. Induction patterns vary not only between different plant species and cultivars but also due to the inducing agent. Finally, the plant–herbivore interactions are discussed with regard to the sawflies’ defence abilities against different carnivore guilds.

Tài liệu tham khảo

Agerbirk N, Müller C, Olsen CE, Chew FS (2006) A common pathway for detoxification of 4-hydroxybenzylglucosinolate in Pieris and Anthocaris (Lepidoptera: Pieridae). Biochem Syst Ecol 34:189–198. doi:10.1016/j.bse.2005.09.005 Agrawal AA (2000) Specificity of induced resistance in wild radish: causes and consequences for two specialist and two generalist caterpillars. Oikos 89:493–500. doi:10.1034/j.1600-0706.2000.890308.x Agrawal AA, Kurashige NS (2003) A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J Chem Ecol 29:1403–1415. doi:10.1023/A:1024265420375 Aliabadi A, Renwick JAA, Whitman DW (2002) Sequestration of glucosinolates by Harlequin bug Murgantia histrionica. J Chem Ecol 28:1749–1762. doi:10.1023/A:1020505016637 Andréasson E, Jørgensen LB (2003) Localization of plant myrosinases and glucosinolates. In: Romeo JT (ed) Recent advances in phytochemistry. Pergamon, Amsterdam, pp 79–99 Andréasson E, Wretblad S, Granér G, Wu X, Zhang J, Dixelius C et al (2001) The myrosinase-glucosinolate system in the interaction between Leptosphaeria maculans and Brassica napus. Mol Plant Pathol 2:281–286. doi:10.1046/j.1464-6722.2001.00076.x Arand K (2006) Spezifität der Glucosinolatsequestration bei Athalia spp. und deren ökologische Relevanz. Diploma Thesis, University of Würzburg, Germany Bartlet E, Blight MM, Lane P, Williams IH (1997) The responses of the cabbage seed weevil Ceutorhynchus assimilis to volatile compounds from oilseed rape in a linear track olfactometer. Entomol Exp Appl 85:257–262. doi:10.1023/A:1003140219888 Bartlet E, Kiddle G, Williams I, Wallsgrove R (1999) Wound-induced increases in the glucosinolate content of oilseed rape and their effect on subsequent herbivory by a crucifer specialist. Entomol Exp Appl 91:163–167. doi:10.1023/A:1003661626234 Bede JC, Musser RO, Felton GW, Korth KL (2006) Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis. Plant Mol Biol 60:519–531. doi:10.1007/s11103-005-4923-y Blande JD, Pickett JA, Poppy GM (2007) A comparison of semiochemically mediated interactions involving specialist and generalist Brassica-feeding aphids and the braconid parasitoid Diaeretiella rapae. J Chem Ecol 33:767–779. doi:10.1007/s10886-007-9264-7 Bodnaryk RP (1992) Effects of wounding on glucosinolates in the cotyledons of oilseed rape and mustard. Phytochemistry 31:2671–2677. doi:10.1016/0031-9422(92)83609-3 Boevé J-L, Müller C (2005) Defence effectiveness of easy bleeding sawfly larvae towards invertebrate and avian predators. Chemoecology 15:51–58. doi:10.1007/s00049-005-0292-x Boevé J-L, Schaffner U (2003) Why does the larval integument of some sawfly species disrupt so easily? The harmful hemolymph hypothesis. Oecologia 134:104–111. doi:10.1007/s00442-002-1092-4 Bones AM, Rossiter JT (1995) Glucosinolates in cruciferous crops. In: Scarisbrick DH, Ferguson AJ (eds) New horizons in oilseed rape. Semundo, Cambridge, pp 46–67 Bradburne RP, Mithen R (2000) Glucosinolate genetics and the attraction of the aphid parasitoid Diaeretiella rapae to Brassica. Proc R Soc Lond B Biol Sci 267:89–95. doi:10.1098/rspb.2000.0971 Bridges M, Jones AME, Bones AM, Hodgson C, Cole R, Bartlet E et al (2002) Spatial organization of the glucosinolate-myrosinase system in brassica specialist aphids is similar to that of the host plant. Proc R Soc Lond B Biol Sci 269:187–191. doi:10.1098/rspb.2001.1861 Chew FS (1988) Biological effects of glucosinolates. In: Cutler HG (ed) Biologically active natural products—potential use in agriculture. American Chemical Society Symposium, Washington, DC, pp 155–181 Cipollini D, Enright S, Traw MB, Bergelson J (2004) Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Mol Ecol 13:1643–1653. doi:10.1111/j.1365-294X.2004.02161.x de Cock R, Matthysen E (2001) Do glow-worm larvae (Coleoptera: Lampyridae) use warning coloration? Ethology 107:1019–1033. doi:10.1046/j.1439-0310.2001.00746.x de Vos M, van Oosten VR, van Poecke RMP, van Pelt JA, Pozo MJ, Mueller MJ et al (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:932–937. doi:10.1094/MPMI-18-0923 Desneux N, Fauvergue X, Dechaume-Moncharmont FX, Kerhoas L, Ballanger Y, Kaiser L (2005) Diaeretiella rapae limits Myzus persicae populations after applications of deltamethrin in oilseed rape. J Econ Entomol 98:9–17 Dicke M, Hilker M (2003) Induced plant defences: from molecular biology to evolutionary ecology. Basic Appl Ecol 4:3–14. doi:10.1078/1439-1791-00129 Doughty KJ, Blight MM, Bock CH, Fieldsend JK, Pickett JA (1996) Release of alkenyl isothiocyanates and other volatiles from Brassica rapa seedlings during infection by Alternaria brassicae. Phytochemistry 43:371–374. doi:10.1016/0031-9422(96)00189-6 ElSayed G, Louveaux A, Mavratzotis M, Rollin P, Quinsac A (1996) Effects of glucobrassicin, epiprogoitrin and related breakdown products on locusts feeding: Schouwia purpurea and desert locust relationships. Entomol Exp Appl 78:231–236. doi:10.1007/BF00187521 Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51. doi:10.1016/S0031-9422(00)00316-2 Falk KL, Gershenzon J (2007) The desert locust, Schistocerca gregaria, detoxifies the glucosinolates of Schouwia purpurea by desulfation. J Chem Ecol 33:1542–1555. doi:10.1007/s10886-007-9331-0 Feeny P (1977) Defensive ecology of the Cruciferae. Ann Mo Bot Gard 64:221–234. doi:10.2307/2395334 Fleishman LJ (1992) The influence of the sensory system and the environment on motion patterns in the visual-displays of Anoline lizards and other vertebrates. Am Nat 139:S36–S61. doi:10.1086/285304 Gigolashvili T, Berger B, Mock H-P, Müller C, Weisshaar B, Flügge U-I (2007) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 50:886–901. doi:10.1111/j.1365-313X.2007.03099.x Gols R, Harvey JA (2008) Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids. Phytochem Rev (this issue). doi:10.1007/s11101-008-9104-6 Goodman D (1971) Differential selection of immobile prey among terrestrial and riparian lizards. Am Midl Nat 86:217–219. doi:10.2307/2423704 Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100. doi:10.1016/j.tplants.2005.12.006 Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333. doi:10.1146/annurev.arplant.57.032905.105228 Heads PA, Lawton JH (1985) Bracken, ants and extrafloral nectaries. III. How insect herbivores avoid ant predation. Ecol Entomol 10:29–42. doi:10.1111/j.1365-2311.1985.tb00532.x Hilker M, Daloze D, Pasteels JM (1992) Cardenolide glycosides from the adults and eggs of Chrysolina fuliginosa (Coleoptera, Chrysomelidae). Experientia 48:1023–1027. doi:10.1007/BF01919158 Hilker M, Stein C, Schröder R, Varama M, Mumm R (2005) Insect egg deposition induces defence responses in Pinus sylvestris: characterisation of the elicitor. J Exp Biol 208:1849–1854. doi:10.1242/jeb.01578 Hoffstadt M (2006) Der Einfluss von Glucosinolaten auf die Physiologie von Athalia spp. Diploma Thesis, Universität Würzburg, Germany Howe HF, Westley LC (1993) Anpassung und Ausbeutung – Wechselbeziehungen zwischen Pflanzen und Tieren. Spektrum Akademischer, Verlag, Heidelberg Husebye A, Arzt S, Burmeister WP, Härtel FV, Brandt A, Rossiter JT et al (2004) Crystal structure at 1.1 Å resolution of an insect myrosinase from Brevicoryne brassicae shows its close relationship to ß-glucosidases. Insect Biochem Mol Biol 35:1311–1320. doi:10.1016/j.ibmb.2005.07.004 Jones AME, Bridges M, Bones AM, Cole R, Rossiter JT (2001) Purification and characterisation of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae (L.). Insect Biochem Mol Biol 31:1–5. doi:10.1016/S0965-1748(00)00157-0 Jones AME, Winge P, Bones AM, Cole R, Rossiter JT (2002) Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae. Insect Biochem Mol Biol 32:275–284. doi:10.1016/S0965-1748(01)00088-1 Kazana E, Pope TW, Tibbles L, Bridges M, Pickett JA, Bones AM et al (2007) The cabbage aphid: a walking mustard oil bomb. Proc R Soc Lond B Biol Sci 274:2271–2277. doi:10.1098/rspb.2007.0237 Kiddle GA, Doughty KJ, Wallsgrove RM (1994) Salicylic acid-induced accumulation of glucosinolates in oilseed rape (Brassica napus L.) leaves. J Exp Bot 45:1343–1346. doi:10.1093/jxb/45.9.1343 Kim JH, Jander G (2007) Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. Plant J 49:1008–1019 Koritsas VM, Lewis JA, Fenwick GR (1991) Glucosinolate responses of oilseed rape, mustard and kale to mechanical wounding and infestation by cabbage stem flea beetle (Psylliodes chrysocephala). Ann Appl Biol 118:209–222. doi:10.1111/j.1744-7348.1991.tb06099.x Kuśnierczyk A (2008) Arabidopsis thaliana responses to aphid infestation. PhD Thesis, Norwegian University of Science and Technology, Norway Lee JM, Hashino Y, Hatakeyama M, Oishi K, Naito T (1998) Egg deposition behavior in the haplodiploid sawfly Athalia rosae ruficornis Jakovlev (Hymenoptera: Symphyta: Tenthredinidae). J Insect Behav 11:419–428. doi:10.1023/A:1020958831972 Li Q, Eigenbrode SD, Stringham GR, Thiagarajah MR (2000) Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities. J Chem Ecol 26:2401–2419. doi:10.1023/A:1005535129399 Ludwig-Müller J, Schubert B, Pieper K, Ihmig S, Hilgenberg W (1997) Glucosinolate content in susceptible and resistant Chinese cabbage varieties during development of clubroot disease. Phytochemistry 44:407–417. doi:10.1016/S0031-9422(96)00498-0 Ludwig-Müller J, Bennett RN, Kiddle G, Ihmig S, Ruppel M, Hilgenberg W (1999) The host range of Plasmodiophora brassicae and its relationship to endogenous glucosinolate content. New Phytol 141:443–458. doi:10.1046/j.1469-8137.1999.00368.x Ludwig-Müller J, Bennett RN, Garcia-Garrido JM, Piche Y, Vierheilig H (2002) Reduced arbuscular mycorrhizal root colonization in Tropaeolum majus and Carica papaya after jasmonic acid application can not be attributed to increased glucosinolate levels. J Plant Physiol 159:517–523. doi:10.1078/0176-1617-00731 MacGibbon DB, Beuzenberg EJ (1978) Location of glucosinolase in Brevicoryne brassicae and Lipaphis erysimi (Aphididae). N Z J Sci 21:389–392 Marples NM, Vanweelen W, Brakefield PM (1994) The relative importance of color, taste and smell in the protection of an aposematic insect Coccinella septempunctata. Anim Behav 48:967–974. doi:10.1006/anbe.1994.1322 Martin N, Müller C (2007) Induction of plant responses by a sequestering insect: relationship of glucosinolate concentration and myrosinase activity. Basic Appl Ecol 8:13–25. doi:10.1016/j.baae.2006.02.001 Matile P (1980) The mustard oil bomb—compartmentation of the myrosinase system. Biochem Physiol Pflanz 175:722–731 McCloud ES, Baldwin IT (1997) Herbivory and caterpillar regurgitants amplify the wound-induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta 203:430–435. doi:10.1007/s004250050210 Memmott J, Godfray HCJ, Bolton B (1993) Predation and parasitism in a tropical herbivore community. Ecol Entomol 18:348–352. doi:10.1111/j.1365-2311.1993.tb01111.x Ménard R, Larue J-P, Silué D, Thouvenot D (1999) Glucosinolates in cauliflower as biochemical markers for resistance against downy mildew. Phytochemistry 52:29–35. doi:10.1016/S0031-9422(99)00165-X Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138:1149–1162. doi:10.1104/pp.104.053389 Mewis I, Tokuhisa J, Schultz JC, Appel HM, Ulrichs C, Gershenzon J (2006) Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry 67:2450–2462. doi:10.1016/j.phytochem.2006.09.004 Mithöfer A, Wanner G, Boland W (2005) Effects of feeding Spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol 137:1160–1168. doi:10.1104/pp.104.054460 Müller C, Arand K (2007) Trade-offs in oviposition choice? Food-dependent performance and defence against predators of a herbivorous sawfly. Entomol Exp Appl 124:153–159. doi:10.1111/j.1570-7458.2007.00558.x Müller C, Brakefield PM (2003) Analysis of a chemical defense in sawfly larvae: easy bleeding targets predatory wasps in late summer. J Chem Ecol 29:2683–2694. doi:10.1023/B:JOEC.0000008012.73092.01 Müller C, Riederer M (2005) Review: plant surface properties in chemical ecology. J Chem Ecol 31:2621–2651. doi:10.1007/s10886-005-7617-7 Müller C, Sieling N (2006) Effects of glucosinolate and myrosinase levels in Brassica juncea on a glucosinolate-sequestering herbivore—and vice versa. Chemoecology 16:191–201. doi:10.1007/s00049-006-0347-7 Müller C, Wittstock U (2005) Uptake and turn-over of glucosinolates sequestered in the sawfly Athalia rosae. Insect Biochem Mol Biol 35:1189–1198. doi:10.1016/j.ibmb.2005.06.001 Müller C, Agerbirk N, Olsen CE, Boevé J-L, Schaffner U, Brakefield PM (2001) Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J Chem Ecol 27:2505–2516. doi:10.1023/A:1013631616141 Müller C, Boevé J-L, Brakefield PM (2002) Host plant derived feeding deterrence towards ants in the turnip sawfly Athalia rosae. Entomol Exp Appl 104:153–157. doi:10.1023/A:1021202929313 Müller C, Agerbirk N, Olsen CE (2003) Lack of sequestration of host plant glucosinolates in Pieris rapae and P. brassicae. Chemoecology 13:47–54. doi:10.1007/s000490300005 Newman RM, Hanscom Z, Kerfoot WC (1992) The watercress glucosinolate-myrosinase system: a feeding deterrent to caddisflies, snails and amphipods. Oecologia 92:1–7. doi:10.1007/BF00317255 Nielsen JK, Dalgaard L, Larsen LM, Sorensen H (1979) Host plant selection of the horseradish flea beetle Phyllotreta armoraciae (Coleoptera: Chrysomelidae): feeding response to glucosinolates from several crucifers. Entomol Exp Appl 25:227–239. doi:10.1007/BF00302784 Nielsen JK, Hansen ML, Agerbirk N, Petersen BL, Halkier BA (2001) Responses of the flea beetles Phyllotreta nemorum and P. cruciferae to metabolically engineered Arabidopsis thaliana with an altered glucosinolate profile. Chemoecology 11:75–83. doi:10.1007/PL00001835 Ohara Y, Nagasaki K, Ohsaki N (1993) Warning coloration in sawfly Athalia rosae larva and concealing coloration in butterfly Pieris rapae larva on similar plants evolved through individual selection. Res Popul Ecol 19:223–230. doi:10.1007/BF02513594 Pasteels JM, Daloze D, Rowell-Rahier M (1986) Chemical defense in chrysomelid eggs and neonate larvae. Physiol Entomol 11:29–37. doi:10.1111/j.1365-3032.1986.tb00388.x Pontoppidan B, Hopkins R, Rask L, Meijer J (2003) Infestation by cabbage aphid (Brevicoryne brassicae) on oilseed rape (Brassica napus) causes a long lasting induction of the myrosinase system. Entomol Exp Appl 109:55–62. doi:10.1046/j.1570-7458.2003.00088.x Pontoppidan B, Hopkins R, Rask L, Meijer J (2005) Differential wound induction of the myrosinase system in oilseed rape (Brassica napus): contrasting insect damage with mechanical damage. Plant Sci 168:715–722. doi:10.1016/j.plantsci.2004.10.003 Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J (2002) Disarming the mustard oil bomb. Proc Natl Acad Sci USA 99:11223–11228. doi:10.1073/pnas.172112899 Rayor LS (2004) Effects of monarch larval host plant chemistry and body size on Polistes wasp predation. In: Oberhauser KS, Solensky MJ (eds) The Monarch butterfly: biology and conservation. Cornell University Press, Ithaca, pp 39–46 Reifenrath K, Müller C (2007) Species-specific and leaf-age dependent effects of ultraviolet radiation on two Brassicaceae. Phytochemistry 68:875–885. doi:10.1016/j.phytochem.2006.12.008 Reifenrath K, Riederer M, Müller C (2005) Leaf surface wax layers of Brassicaceae lack feeding stimulants for Phaedon cochleariae. Entomol Exp Appl 115:41–50. doi:10.1111/j.1570-7458.2005.00242.x Renwick JAA (2002) The chemical world of crucivores: lures, treats and traps. Entomol Exp Appl 104:35–42. doi:10.1023/A:1021231732022 Renwick JAA, Lopez K (1999) Experience-based food consumption by larvae of Pieris rapae: addiction to glucosinolates? Entomol Exp Appl 91:51–58. doi:10.1023/A:1003693005761 Reymond P, Bodenhausen N, Van Poecke RMP, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147. doi:10.1105/tpc.104.026120 Roessingh P, Städler E, Fenwick GR, Lewis JA, Nielsen JK, Hurter J et al (1992) Oviposition and tarsal chemoreceptors of the cabbage root fly are stimulated by glucosinolates and host plant-extracts. Entomol Exp Appl 65:267–282. doi:10.1007/BF02343860 Rossiter JT, Jones AM, Bones AM (2003) A novel myrosinase-glucosinolate defense system in Cruciferous specialist aphids. In: Romeo JT (eds) Integrative phytochemistry: from ethnobotany to molecular ecology. Pergamon, Amsterdam. Recent Adv Phytochem 37: 127–142 Schaffner U, Boevé J-L, Gfeller H, Schlunegger UP (1994) Sequestration of Veratrum alkaloids by specialist Rhadinoceraea nodicornis Konow (Hymenoptera, Tenthredinidae) and its ecoethological implications. J Chem Ecol 20:3233–3250. doi:10.1007/BF02033723 Schoonhoven LM, van Loon JJA, Dicke M (2006) Insect-plant biology. Oxford University Press, Oxford Seifert B (1996) Ameisen beobachten bestimmen. Naturbuch Verlag, Augsburg Shattuck VI (1993) Glucosinolates and glucosinolate degradation in seeds from turnip mosaic-virus-infected rapid cycle Brassica campestris L. plants. J Exp Bot 44:963–970. doi:10.1093/jxb/44.5.963 Siemens DH, Mitchell-Olds T (1998) Evolution of pest-induced defenses in Brassica plants: tests of theory. Ecology 79:632–646 Sillman AJ (1973) Avial vision. In: Farner DS, King JR, Parkes KC (eds) Avial biology. Academic Press, New York, pp 349–387 Städler E, Reifenrath K (2008) Insect herbivores perceiving glucosinolates on the leaf surface? Phytochem Rev (this issue). doi:10.1007/s11101-008-9108-2 Stotz HU, Pittendrigh BR, Kroymann J, Weniger K, Fritsche J, Bauke A et al (2000) Induced plant defense responses against chewing insects. Ethylen signaling reduces resistance of Arabidopsis against Egyptian Cotton Worm but not Diamondback Moth. Plant Physiol 124:1007–1017. doi:10.1104/pp.124.3.1007 Tanton MT (1977) Response to food plant stimuli by larvae of the mustard beetle Phaedon cochleariae. Entomol Exp Appl 22:113–122. doi:10.1007/BF00302567 Textor S, Gershenzon J (2008) Herbivore induction of the glucosinolate-myrosinase defense system: Major trends, biochemical basis and ecological significance. Phytochem Rev (this issue). doi:10.1007/s11101-008-9117-1 Travers-Martin N, Müller C (2007) Specificity of induction responses in a Brassicaceae and their effects on a specialist herbivore. J Chem Ecol 33:1582–1597 Travers-Martin N, Müller C (2008) Specificity of induction responses in Sinapis alba L.: plant growth and development. Plant Signal Behav 3:311–313 Traw MB (2002) Is induction response negatively correlated with constitutive resistance in black mustard? Evolution 56:2196–2205 Traw MB, Dawson TE (2002) Differential induction of trichomes by three herbivores of black mustard. Oecologia 131:526–532. doi:10.1007/s00442-002-0924-6 Tumlinson JH, Lait CG (2005) Biosynthesis of fatty acid amide elicitors of plant volatiles by insect herbivores. Arch Insect Biochem Physiol 58:54–68. doi:10.1002/arch.20036 van Dam NM, Raaijmakers CE (2006) Local and systemic induced responses to cabbage root fly larvae (Delia radicum) in Brassica nigra and B. oleracea. Chemoecology 16:17–24. doi:10.1007/s00049-005-0323-7 van Dam NM, Harvey JA, Wäckers FL, Bezemer TM, van der Putten WH, Vet LEM (2003) Interactions between aboveground and belowground induced responses against phytophages. Basic Appl Ecol 4:63–77. doi:10.1078/1439-1791-00133 van Loon JJA, Frentz WH, Vaneeuwijk FA (1992) Electroantennogram responses to plant volatiles in 2 species of Pieris butterflies. Entomol Exp Appl 62:253–260. doi:10.1007/BF00353444 Vergara F, Svatos A, Schneider B, Reichelt M, Gershenzon J, Wittstock U (2006) Glycine conjugates in a lepidopteran insect herbivore—the metabolism of benzylglucosinolate in the cabbage white butterfly, Pieris rapae. Chembiochem 7:1982–1989. doi:10.1002/cbic.200600280 Verschaffelt E (1910) The cause determining the selection of food in some herbivorous insects. Proc Acad Sci Amst 13:536–542 Vlieger L, Brakefield PM, Müller C (2004) Effectiveness of the defence mechanism of the turnip sawfly, Athalia rosae (Hymenoptera: Tenthredinidae), against predation by lizards. Bull Entomol Res 94:283–289. doi:10.1079/BER2004299 von Dahl CC, Hävecker M, Schlögl R, Baldwin IT (2006) Caterpillar-elicited methanol emission: a new signal in plant–herbivore interactions? Plant J 46:948–960. doi:10.1111/j.1365-313X.2006.02760.x Wallace SK, Eigenbrode SD (2002) Changes in the glucosinolate-myrosinase defense system in Brassica juncea cotyledons during seedling development. J Chem Ecol 28:243–256. doi:10.1023/A:1017973005994 Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216 Weber G, Oswald S, Zöllner U (1986) Die Wirtseignung von Rapssorten unterschiedlichen Glucosinolatgehaltes für Brevicoryne brassicae (L.) und Myzus persicae (Sulzer) (Hemiptera, Aphididae). Z Pflanzenkr Pflanzenschutz 93:113–124 Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270. doi:10.1016/S1360-1385(02)02273-2 Wittstock U, Kliebenstein DJ, Lambrix V, Reichelt M, Gershenzon J (2003) Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. In: Romeo JT (ed) Recent advances in phytochemistry. Pergamon, Amsterdam, pp 101–125 Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T et al (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci USA 101:4859–4864. doi:10.1073/pnas.0308007101