Interactions among the Escherichia coli mutT, mutM, and mutY damage prevention pathways

DNA Repair - Tập 2 Số 2 - Trang 159-173 - 2003
Robert G. Fowler1, Steven J. White1, Carol Koyama1, Sean C. Moore2, R L Dunn2, Roel M. Schaaper2
1Department of Biological Sciences, San José State University, San José, CA, 95192, USA
2Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709 USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Shibutani, 1991, Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG, Nature, 349, 431, 10.1038/349431a0

Michaels, 1992, The GO system protects organisms from the mutagenic effect of the spontaneous lesion 8-hydroxyguanine (7,8-dihydro-8-oxoguanine), J. Bacteriol., 174, 6321, 10.1128/jb.174.20.6321-6325.1992

Maki, 1992, MutT protein specifically hydrolyzes a potent mutagenic substrate for DNA synthesis, Nature, 355, 273, 10.1038/355273a0

Fowler, 1997, The role of the mutT gene of Escherichia coli in maintaining replication fidelity, FEMS Microbiol. Rev., 21, 43, 10.1111/j.1574-6976.1997.tb00344.x

Chetsanga, 1981, Purification and characterization of Escherichia coli formamidopyrimidine-DNA glycosylase that excises damaged 7-methylguanine from deoxyribonucleic acid, Biochemistry, 20, 5201, 10.1021/bi00521a016

Boiteux, 1992, Substrate specificity of the Escherichia coli FPG protein (formamidopyrimidine-DNA glycosylase): excision of purine lesions in DNA produced by ionizing radiation or photosensitization, Biochemistry, 31, 106, 10.1021/bi00116a016

Chung, 1991, An endonuclease activity of Escherichia coli that specifically removes 8-hydroxyguanine residues from DNA, Mutat. Res., 254, 1, 10.1016/0921-8777(91)90035-N

Michaels, 1992, Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA, Proc. Natl. Acad. Sci. U.S.A., 89, 70212, 10.1073/pnas.89.15.7022

Au, 1989, Escherichia coli mutY gene encodes an adenine glycosylase active on G–A mispairs, Proc. Natl. Acad. Sci. U.S.A., 86, 8877, 10.1073/pnas.86.22.8877

Radicella, 1988, Some mismatch repair activities in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 85, 9674, 10.1073/pnas.85.24.9674

Michaels, 1992, A repair system for 8-oxo-7,8-dihydrodeoxyguanine, Biochemistry, 31, 10964, 10.1021/bi00160a004

Cabrera, 1988, mutM, a second mutator locus in Escherichia coli that generates G·C → T·A transversions, J. Bacteriol., 170, 5405, 10.1128/jb.170.11.5405-5407.1988

Nghiem, 1988, The mutY gene: a mutator locus in Escherichia coli that generates G·C → T·A transversions, Proc. Natl. Acad. Sci. U.S.A., 85, 2709, 10.1073/pnas.85.8.2709

Grollman, 1993, Mutagenesis by 8-oxoguanine: an enemy within, Trends Genet., 9, 246, 10.1016/0168-9525(93)90089-Z

Tajiri, 1995, Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli, Mutat. Res., 336, 257, 10.1016/0921-8777(94)00062-B

Michaels, 1991, MutM, a protein that prevents G·C → T·A transversions, is formamidopyrimidine-DNA glycosylase, Nucleic Acids Res., 19, 3629, 10.1093/nar/19.13.3629

Tsai-Wu, 1994, Escherichia coli mutY-dependent mismatch repair involves DNA polymerase I and a short repair tract, Mol. Gen. Genet., 244, 444, 10.1007/BF00286698

Yanofsky, 1966, Amino acid replacements and the genetic code, Cold Spring Harbor Symp. Quant. Biol., 31, 151, 10.1101/SQB.1966.031.01.023

Vidmar, 1993, MutY repair is mutagenic in mutT− strains of Escherichia coli, Can. J. Microbiol., 39, 892, 10.1139/m93-133

Degnen, 1974, Conditional mutator gene in Escherichia coli: isolation, mapping, and effector studies, J. Bacteriol., 117, 477, 10.1128/JB.117.2.477-487.1974

Fijalkowska, 1993, Mutants of Escherichia coli with increased fidelity of DNA replication, Genetics, 134, 1023, 10.1093/genetics/134.4.1023

Schaaper, 1987, Escherichia coli mutT mutator effect during in vitro DNA synthesis. Enhanced A·G replication errors, J. Biol. Chem., 262, 16267, 10.1016/S0021-9258(18)49248-4

Schaaper, 1985, Rapid repeated cloning of mutant lac repressor genes, Nucleic Acids Res., 39, 181

Cupples, 1989, A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions, Proc. Natl. Acad. Sci. U.S.A., 86, 5345, 10.1073/pnas.86.14.5345

Strigini, 1970, Ribosomal mutations affecting efficiency of amber suppression, J. Mol. Biol., 47, 517, 10.1016/0022-2836(70)90319-0

Vogel, 1956, Acetylornithinase of Escherichia coli: partial purification and some properties, J. Biol. Chem., 218, 97, 10.1016/S0021-9258(18)65874-0

Allen, 1963, A biochemical and genetic study of reversion with the A-gene A-protein system of Escherichia coli tryptophan synthetase, Genetics, 48, 1065, 10.1093/genetics/48.8.1065

Cox, 1972, Mutator gene studies in Escherichia coli: the mutS gene, Genetics, 72, 551, 10.1093/genetics/72.4.551

Fix, 1993, N-Ethyl-N-nitrosourea-induced mutagenesis in Escherichia coli: multiple roles for UmuC protein, Mutat. Res., 294, 127, 10.1016/0921-8777(93)90021-8

Nichols, 1979, Nucleotide sequences of trpA of Salmonella typhimurium and Escherichia coli: an evolutionary comparison, Proc. Natl. Acad. Sci. U.S.A., 76, 5244, 10.1073/pnas.76.10.5244

Timms, 1992, Mutant sequences in the rpsL gene of Escherichia coli B/r: mechanistic implications for spontaneous and ultraviolet light mutagenesis, Mol. Gen. Genet., 232, 89, 10.1007/BF00299141

Jin, 1988, Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance, J. Mol. Biol., 202, 45, 10.1016/0022-2836(88)90517-7

Tassotto, 2002, Assessing the metabolic function of the MutT 8-oxodeoxyguanosine triphosphatase in Escherichia coli by nucleotide pool analysis, J. Biol. Chem., 277, 15807, 10.1074/jbc.M200965200

Fowler, 1992, The interaction of the Escherichia coli mutD and mutT pathways in the prevention of A:T → C:G transversions, Mutat. Res., 284, 307, 10.1016/0027-5107(92)90015-T

Pavlov, 1994, DNA replication fidelity with 8-oxodeoxyguanosine triphosphate, Biochemistry, 33, 4695, 10.1021/bi00181a029

Yanofsky, 1966, The unusual mutational specificity of an Escherichia coli mutator gene, Proc. Natl. Acad. Sci. U.S.A., 55, 274, 10.1073/pnas.55.2.274

Purmal, 1994, 5-Hydroxypyrimidine deoxynucleoside triphosphates are more efficiently incorporated into DNA by exonuclease-free Klenow fragment than 8-oxopurine deoxynucleoside triphosphates, Nucleic Acids Res., 22, 3930, 10.1093/nar/22.19.3930

Zaccolo, 1996, An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues, J. Mol. Biol., 255, 589, 10.1006/jmbi.1996.0049

Einolf, 1998, Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases, Biochemistry, 37, 13300, 10.1021/bi981346d

Miller, 2000, 8-oxodGTP incorporation by DNA polymerase β is modified by active-site residue Asn279, Biochemistry, 39, 1029, 10.1021/bi991789x

Einolf, 2001, Fidelity of nucleotide insertion at 8-oxo-7,8-dihydroguanine by mammalian DNA polymerase δ. Steady-state and pre-steady-state kinetic analysis, J. Biol. Chem., 276, 3764, 10.1074/jbc.M006696200

Culp, 1989, Structural and conformational analyses of 8-hydroxy-2′-deoxyguanosine, Chem. Res. Toxicol., 2, 416, 10.1021/tx00012a010

Kouchakdjian, 1991, NMR structural studies of the ionizing radiation adduct 7-hydro-8-oxodeoxyguanine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-Oxo-7H-dG (syn)·dA (anti) alignment at lesion site, Biochemistry, 30, 1403, 10.1021/bi00219a034

McAuley-Hecht, 1994, Crystal structure of a DNA duplex containing 8-hydroxyguanine-adenine base pairs, Biochemistry, 33, 10266, 10.1021/bi00200a006

Ni, 1999, MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae, Mol. Cell, 4, 439, 10.1016/S1097-2765(00)80346-9

Mazurek, 2002, Activation of human MutS homologs by 8-oxo-guanine DNA damage, J. Biol. Chem., 277, 8260, 10.1074/jbc.M111269200

Colussi, 2002, The mammalian mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool, Curr. Biol., 12, 912, 10.1016/S0960-9822(02)00863-1

Zhao, 2000, Reduction of G·C → A·T transversion mutations by overexpression of MutS in Escherichia coli K-12, J. Bacteriol., 182, 5025, 10.1128/JB.182.17.5025-5028.2000

Schaaper, 1989, A·T → C·G transversions and their prevention by the Escherichia coli mutT and mutHLS pathways, Mol. Gen. Genet., 219, 256, 10.1007/BF00261185

Blaisdell, 1999, A novel role for Escherichia coli endonuclease VIII in prevention of spontaneous G → T transversions, J. Bacteriol., 181, 6396, 10.1128/JB.181.20.6396-6402.1999

Hazra, 2000, Characterization of a novel 8-oxoguanine-DNA glycosylase activity in Escherichia coli and identification of the enzyme as endonuclease VIII, J. Biol. Chem., 275, 27762, 10.1074/jbc.M004052200

Cheng, 1992, 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G·T and A·C substitutions, J. Biol. Chem., 267, 166, 10.1016/S0021-9258(18)48474-8

Inoue, 1998, Induction of chromosomal gene mutations in Escherichia coli by direct incorporation of oxidatively damaged nucleotides. New evaluation method for mutagenesis by damaged DNA precursors in vivo, J. Biol. Chem., 273, 11069, 10.1074/jbc.273.18.11069

Bebenek, 1999, The base substitution fidelity of HIV-1 reverse transcriptase on DNA and RNA templates probed with 8-oxo-deoxyguanosine triphosphate, Mutat. Res., 429, 149, 10.1016/S0027-5107(99)00119-0

Kamiya, 2000, 2-Hydroxy-dATP is incorporated opposite G by Escherichia coli DNA polymerase III resulting in high mutagenicity, Nucleic Acids Res., 28, 1640, 10.1093/nar/28.7.1640

Lowe, 1996, Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo and II exo, Biochemistry, 35, 9840, 10.1021/bi960485x

Furge, 1997, Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics, Biochemistry, 36, 6475, 10.1021/bi9627267

Efrati, 1999, “Action-at-a-distance” mutagenesis. 8-Oxo-7,8-dihydro-2′-deoxyguanosine causes base substitution errors at neighboring template sites when copied by DNA polymerase β, J. Biol. Chem., 274, 15920, 10.1074/jbc.274.22.15920

Haracska, 2000, Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase eta, Nat. Genet., 25, 458, 10.1038/78169

Zhang, 1998, Escherichia coli MutY protein has a guanine-DNA glycosylase that acts on 7,8-dihydro-8-oxo-guanine:guanine mispair to prevent spontaneous G:C → C:G transversions, Nucleic Acids Res., 26, 4669, 10.1093/nar/26.20.4669

Schaaper, 1998, Antimutator mutants in bacteriophage T4 and Escherichia coli, Genetics, 148, 1579, 10.1093/genetics/148.4.1579