Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R

Jayashree Srinivasan1, Melitta Schachner1, William A. Catterall1
1Departments of Pharmacology and Neurological Surgery, University of Washington, Seattle, WA 98195-7280 and Zentrum für Molekulare Neurobiologie, University of Hamburg, Martinistrasse 52, D-20246 Hamburg, Germany

Tóm tắt

The type IIA rat brain sodium channel is composed of three subunits: a large pore-forming α subunit and two smaller auxiliary subunits, β1 and β2. The β subunits are single membrane-spanning glycoproteins with one Ig-like motif in their extracellular domains. The Ig motif of the β2 subunit has close structural similarity to one of the six Ig motifs in the extracellular domain of the cell adhesion molecule contactin (also called F3 or F11), which binds to the extracellular matrix molecules tenascin-C and tenascin-R. We investigated the binding of the purified sodium channel and the extracellular domain of the β2 subunit to tenascin-C and tenascin-R in vitro . Incubation of purified sodium channels on microtiter plates coated with tenascin-C revealed saturable and specific binding with an apparent K d of ≈15 nM. Glutathione S -transferase-tagged fusion proteins containing various segments of tenascin-C and tenascin-R were purified, digested with thrombin to remove the epitope tag, immobilized on microtiter dishes, and tested for their ability to bind purified sodium channel or the epitope-tagged extracellular domain of β2 subunits. Both purified sodium channels and the extracellular domain of the β2 subunit bound specifically to fibronectin type III repeats 1–2, A, B, and 6–8 of tenascin-C and fibronectin type III repeats 1–2 and 6–8 of tenascin-R but not to the epidermal growth factor-like domain or the fibrinogen-like domain of these molecules. The binding of neuronal sodium channels to extracellular matrix molecules such as tenascin-C and tenascin-R may play a crucial role in localizing sodium channels in high density at axon initial segments and nodes of Ranvier or in regulating the activity of immobilized sodium channels in these locations.

Từ khóa


Tài liệu tham khảo

10.1016/S0079-6123(08)60614-7

10.1016/0896-6273(95)90095-0

10.1523/JNEUROSCI.01-07-00777.1981

10.1073/pnas.83.21.8424

10.1007/BFb0037088

10.1073/pnas.79.21.6707

10.1111/j.1471-4159.1978.tb12479.x

10.1016/S0092-8674(85)80110-0

10.1016/0092-8674(87)90248-0

10.1038/352431a0

10.1523/JNEUROSCI.12-06-02259.1992

10.1038/356333a0

10.1038/386724a0

10.1152/physrev.1992.72.suppl_4.S15

10.1126/science.256.5058.839

10.1016/0092-8674(95)90121-3

10.1073/pnas.82.14.4847

10.1016/0092-8674(86)90664-1

10.1016/S0021-9258(19)76485-0

10.1016/0896-6273(88)90171-7

10.1016/S0021-9258(18)81673-8

10.1038/383307b0

10.1146/annurev.iy.06.040188.002121

10.1016/S0896-6273(00)80045-8

10.1016/S0955-0674(97)80115-9

10.1083/jcb.107.4.1561

10.1083/jcb.119.1.203

L Vaughan, P Weber, L D’Alessandri, A H Zisch, K H Winterhalter Perspect Dev Neurobiol 2, 43–52 (1994).

10.1016/0896-6273(93)90243-K

10.1111/j.1460-9568.1996.tb01262.x

10.1002/(SICI)1097-4547(19970915)49:6<698::AID-JNR4>3.0.CO;2-2

10.1002/glia.440090302

M Schachner, J Taylor, U Bartsch, P Pesheva Perspect Dev Neurobiol 2, 33–41 (1994).

10.1007/s004410050938

10.1016/0896-6273(90)90217-4

10.1083/jcb.113.5.1159

10.1523/JNEUROSCI.13-09-03986.1993

10.1111/j.1460-9568.1994.tb00304.x

10.1038/333177a0

10.1016/S0021-9258(17)43460-0

10.1002/(SICI)1097-4547(19960215)43:4<420::AID-JNR4>3.0.CO;2-H

10.1083/jcb.109.4.1765

10.1111/j.1471-4159.1990.tb02350.x

10.1002/(SICI)1097-4547(19980515)52:4<390::AID-JNR3>3.0.CO;2-4

10.1073/pnas.84.23.8682

10.1002/(SICI)1097-4547(19971015)50:2<321::AID-JNR20>3.0.CO;2-9

10.1523/JNEUROSCI.16-16-04914.1996

Z C Xiao, D S Ragsdale, P E Brown, L L Isom Soc Neurosci Abstr 24, 1323 (1998).

10.1016/0955-0674(93)90037-Q