Interaction of silver nanoparticles with HIV-1

Journal of Nanobiotechnology - Tập 3 Số 1 - 2005
Jose Luis Elechiguerra1, Justin L. Burt1, José Rubén Morones‐Ramírez1, Alejandra Camacho-Bragado2, Xiaoxia Gao2, Humberto H. Lara3, Miguel José Yacamán2
1Department of Chemical Engineering, The University of Texas at Austin, Austin, USA
2Texas Materials Institute, The University of Texas at Austin, Austin, USA
3Facultad de Ciencias Biológicas, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Mexico

Tóm tắt

Abstract The interaction of nanoparticles with biomolecules and microorganisms is an expanding field of research. Within this field, an area that has been largely unexplored is the interaction of metal nanoparticles with viruses. In this work, we demonstrate that silver nanoparticles undergo a size-dependent interaction with HIV-1, with nanoparticles exclusively in the range of 1–10 nm attached to the virus. The regular spatial arrangement of the attached nanoparticles, the center-to-center distance between nanoparticles, and the fact that the exposed sulfur-bearing residues of the glycoprotein knobs would be attractive sites for nanoparticle interaction suggest that silver nanoparticles interact with the HIV-1 virus via preferential binding to the gp120 glycoprotein knobs. Due to this interaction, silver nanoparticles inhibit the virus from binding to host cells, as demonstrated in vitro.

Từ khóa


Tài liệu tham khảo

Bonnemann H, Richards RM: Nanoscopic metal particles- Synthetic methods and potential applications. Eur J Inorg Chem. 2001, 10: 2455-2480. 10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.3.CO;2-Q.

Nam JM, Thaxton CS, Mirkin CA: Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 2003, 301: 1884-1886. 10.1126/science.1088755.

Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, Feldheim DL: Multifunctional Gold Nanoparticle-Peptide Complexes for Nuclear Targeting. J Am Chem Soc. 2003, 125: 4700-4701. 10.1021/ja0296935.

Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS. 2003, 100: 13549-13554. 10.1073/pnas.2232479100.

Liz-Marzan LM: Nanometals: Formation and color. Materials Today. 2004, 7: 26-31. 10.1016/S1369-7021(04)00080-X.

Mulvaney P: Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir. 1996, 12: 788-800. 10.1021/la9502711.

Burda C, Chen X, Narayanan R, El-Sayed MA: Chemistry and Properties of Nanocrystals of Different Shapes. Chemical Reviews (Washington, DC, United States). 2005, 105: 1025-1102.

Yu YY, Chang SS, Lee CL, Wang CRC: Gold nanorods: electrochemical synthesis and optical properties. Journal of Physical Chemistry B. 1997, 101: 6661-6664. 10.1021/jp971656q.

Canizal G, Ascencio JA, Gardea-Torresday J, Jose-Yacaman M: Multiple twinned gold nanorods grown by bio-reduction techniques. Journal of Nanoparticle Research. 2001, 3: 475-481. 10.1023/A:1012578821566.

Jana NR, Gearheart L, Murphy CJ: Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials (Weinheim, Germany). 2001, 13: 1389-1393. 10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F.

Jana NR, Gearheart L, Murphy CJ: Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. Journal of Physical Chemistry B. 2001, 105: 4065-4067. 10.1021/jp0107964.

Sun Y, Mayers B, Herricks T, Xia Y: Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence. Nano Letters. 2003, 3: 955-960. 10.1021/nl034312m.

Lisiecki I, Filankembo A, Sack-Kongehl H, Weiss K, Pileni MP, Urban J: Structural investigations of copper nanorods by high-resolution TEM. Physical Review B: Condensed Matter and Materials Physics. 2000, 61: 4968-4974.

Zhou Y, Yu SH, Cui XP, Wang CY, Chen ZY: Formation of Silver Nanowires by a Novel Solid-Liquid Phase Arc Discharge Method. Chemistry of Materials. 1999, 11: 545-546. 10.1021/cm981122h.

Schultz S, Smith DR, Mock JJ, Schultz DA: Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proceedings of the National Academy of Sciences of the United States of America FIELD Publication Date:2000 Feb 1. 97: 996-1001. FIELD Reference Number: FIELD Journal Code:7505876 FIELD Call Number:. 10.1073/pnas.97.3.996.

Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD: Interaction of silver nitrate with readily identifiable groups: ralationship to the antibacterial action of silver ions. Lett Appl Microbiol. 1997, 25: 279-283. 10.1046/j.1472-765X.1997.00219.x.

Gupta A, Silver S: Silver as biocide:Will resistance become a problem?. Nat Biotechnol. 1998, 16: 888-10.1038/nbt1098-888.

Nomiya K, Yoshizawa A, Tsukagoshi K, Kasuga NC, Hirakawa S, Watanabe J: Synthesis and structural characterization of silver (I), aluminium (III) and cobalt(II) complexes with 4-isopropyltropolone (hinokitiol) showing noteworthy biological activities. Action of silver(I)-oxygen bonding complexes on the antimicrobial activities. J Inorg Biochem. 2004, 98: 46-60. 10.1016/j.jinorgbio.2003.07.002.

Sondi I, Salopek-Sondi B: Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004, 275: 177-182. 10.1016/j.jcis.2004.02.012.

Burt JL, Gutierrez-Wing C, Miki-Yoshida M, Jose-Yacaman MJ: Noble-Metal Nanoparticles Directly Conjugated to Globular Proteins. Langmuir. 2004, 20: 11778-11783. 10.1021/la048287r.

Bradley JS: Clusters and Colloids: From Theory to Applications. Clusters and Colloids: From Theory to Applications. Edited by: Schmid GE. 1994, Weinheim, VCH, 459-536.

Bonet F, Guery C, Guyomard D, Urbina RH, Tekaia-Elhsissen K, Tarascon JM: Electrochemical reduction of noble metal compounds in ethylene glycol. International Journal of Inorganic Materials. 1999, 1: 47-51. 10.1016/S1463-0176(99)00007-1.

Wiley B, Sun Y, Mayers B, Xia Y: Shape-controlled synthesis of metal nanostructures: The case of silver. Chemistry - A European Journal. 2005, 11: 454-463. 10.1002/chem.200400927.

Peters TJ: All About Albumin: Biochemistry, Genetics, and Medical Applications. All About Albumin: Biochemistry, Genetics, and Medical Applications. 1996, San Diego, Academic Press, 9-75.

Brause R, Moeltgen H, Kleinermanns K: Characterization of laser-ablated and chemically reduced silver colloids in aqueous solution by UV/VIS spectroscopy and STM/SEM microscopy. Applied Physics B: Lasers and Optics. 2002, 75: 711-716. 10.1007/s00340-002-1024-3.

Kerker M: The optics of colloidal silver: something old and something new. Journal of Colloid and Interface Science. 1985, 105: 297-314. 10.1016/0021-9797(85)90304-2.

Sosa IO, Noguez C, Barrera RG: Optical Properties of Metal Nanoparticles with Arbitrary Shapes. Journal of Physical Chemistry B. 2003, 107: 6269-6275. 10.1021/jp0274076.

Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S: Shape effects in plasmon resonance of individual colloidal silver nanoparticles. Journal of Chemical Physics. 2002, 116: 6755-6759. 10.1063/1.1462610.

Petit C, Lixon P, Pileni MP: In situ synthesis of silver nanocluster in AOT reverse micelles. Journal of Physical Chemistry. 1993, 97: 12974-12983. 10.1021/j100151a054.

Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL: Bacterial Biosynthesis of Cadmium Sulfide Nanocrystals. Chemistry & Biology. 2004, 11: 1553-1559. 10.1016/j.chembiol.2004.08.022.

James EM, Browning ND: Practical aspects of atomic resolution imaging and analysis in STEM. Ultramicroscopy. 1999, 78: 125-139. 10.1016/S0304-3991(99)00018-2.

Forster MJ, Mulloy B, Nermut MV: Molecular modelling study of HIV p17gag (MA) protein shell utilising data from electron microscopy and X-ray crystallography. J Mol Biol. 2000, 298: 841-857. 10.1006/jmbi.2000.3715.

Arthur LO, Bess JW, Sowder RC, Benveniste R, Mann D, Chermann J, Henderson L: Cellular proteins bound to immunodeficiency viruses: implications for pathogenesis and vaccines. Science. 1992, 258: 1935-1938.

Leonard CK, Spellman MW, Riddle L, Harris RJ, Thomas JN, Gregory TJ: Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem. 1990, 265: 10373-10382.

Gelderblom HR, Hausmann EHS, Ozel M, Pauli G, Koch MA: Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. Virology. 1987, 156: 171-176. 10.1016/0042-6822(87)90449-1.

Dalgleish AG, Beverley PCL, Clapham PR, Crawford DH, Greaves MF, Weiss RA: The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984, 312: 763-767. 10.1038/312763a0.

Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard D, Hercend T, Gluckman JC, Montagnier L: T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature. 1984, 312: 767-768. 10.1038/312767a0.

Feng Y, Broder CC, Kennedy PE, Berger E: HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996, 272: 872-877.

Harada S, Koyanagi Y, Yamamoto N: Infection of HTLV-III/LAV in HTLV-I-carrying cells MT-2 and MT-4 and application in a plaque assay. Science. 1985, 229: 563-566.

Sodroski J, Goh WC, Rosen C, Campbell K, Haseltine WA: Role of the HTLV-III/LAV envelope in syncytium formation and cytopathicity. Nature. 1986, 322: 470-474. 10.1038/322470a0.

Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR: Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996, 381: 661-10.1038/381661a0.

Chackerian B, Long EM, Luciw PA, Overbaugh J: Human immunodeficiency virus type 1 coreceptors participate in postentry stages in the virus replication cycle and function in simian immunodeficiency virus infection. J Virol. 1997, 71: 3932-3939.

Kaltenbach JP, Kaltenbach MH, Lyons WB: Nigrosin as a dye for differentiating live and dead ascites cells*1. Exp Cell Res. 1958, 15: 112-117. 10.1016/0014-4827(58)90067-3.