Interaction of liposomes bearing a lipophilic doxorubicin prodrug with tumor cells

Pleiades Publishing Ltd - Tập 7 - Trang 12-20 - 2013
N. R. Kuznetsova1, E. V. Svirshchevskaya1, I. V. Skripnik1, E. N. Zarudnaya2, A. N. Benke1, G. P. Gaenko1, Yu. G. Molotkovskii1, E. L. Vodovozova1
1Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
2Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia

Tóm tắt

When used as nanosized carriers, liposomes enable targeted delivery and decrease systemic toxicity of antitumor agents significantly. However, slow unloading of liposomes inside cells diminishes the treatment efficiency. The problem could be overcome by the adoption of lipophilic prodrugs tailored for incorporation into lipid bilayer of liposomes. We prepared liposomes of egg yolk phosphatidylcholine and yeast phosphatidylinositol bearing a diglyceride conjugate of an antitumor antibiotic doxorubicin (a lipophilic prodrug, DOX-DG) in the membrane to study how these formulations interact with tumor cells. We also prepared liposomes of rigid bilayer-forming lipids, such as a mixture of dipalmitoylphosphatidylcholine and cholesterol, bearing DOX in the inner water volume, both pegylated (with polyethylene glycol (PEG) chains exposed to water phase) and non-pegylated. Efficiency of binding of free and liposomal doxorubicin with tumor cells was evaluated in vitro using spectrofluorimetry of cell extracts and flow cytometry. Intracellular traffic of the formulations was investigated by confocal microscopy; co-localization of DOX fluorescence with organelle trackers was estimated. All liposomal formulations of DOX were shown to distribute to organelles retarding its transport to nucleus. Intracellular distribution of liposomal DOX depended on liposome structure and pegylation. We conclude that the most probable mechanism of the lipophilic prodrug penetration into a cell is liposome-mediated endosomal pathway.

Tài liệu tham khảo

Fenske D.B., Cullis P.R. 2008. Liposomal nanomedicines. Expert Opin. Drug Deliv. 5, 25–44. Yuan F., Dellian M., Fukumura D., Leunig M., Berk D.A., Torchilin V.P., Jain R.K. 1995. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55, 3752–3756. Gabizon A., Schmeeda H., Barenholz Y. 2003. Pharmacokinetics of pegylated liposomal doxorubicin: A review of animal and human studies. Clin. Pharmacokinet. 42, 419–436. Lasic D.D., Papahadjopoulos D. 1995. Liposomes revisited. Science. 267, 1275–1276. Zucker D., Marcus D., Barenholz Y., Goldblum A. 2009. Liposome drugs’ loading efficiency: A working model based on loading conditions and drug’s physicochemical properties. J. Control Release. 139, 73–80. Allen T.M., Cullis P.R. 2004. Drug delivery systems: Entering the mainstream. Science. 303, 1818–1822. Vodovozova E.L., Kuznetsova N.R., Kadykov V.A., Khutsyan S.S., Gaenko G.P., Molotkovskii J.G. 2008. Liposomes as nanocarriers of lipid-conjugated antitumor drugs melphalan and methotrexate. Ros. nanotekhonologii (Rus.). 3(3–4), 162–172 [Transl. version in Nanotechnologies in Russia. 3 (3–4), 228–239]. Kuznetsova N., Kandyba A., Vostrov I., Kadykov V., Gaenko G., Molotkovsky J., Vodovozova E. 2009. Liposomes loaded with lipophilic prodrugs of methotrexate and melphalan as convenient drug delivery vehicles. J. Drug Deliv. Sci. Technol. 19, 51–59. Kozlov A.M., Korchagina E.Yu., Vodovozova E.L., Bovin N.V., Molotkovskii Yu.G., Syrkin A.B. 1997. Enhancement of antitumor activity of sarcolysin by its transformation to lipid derivative and incorporation into membrane of liposomes equipped with a carbohydrate targeting ligand. Bull. eksperim. biol. med. (Rus.). 123, 439–441. Vodovozova E.L., Moiseeva E.V., Gayenko G.P., Nifant’ev N.E., Bovin N.V., Molotkovsky J.G. 2000. Antitumor activity of cytotoxic liposomes equipped with selectin ligand SiaLex in mouse mammary adenocarcinoma. Eur. J. Cancer. 36, 942–947. Vodovozova E.L., Moiseeva E.V., Gaenko G.P., Bovin N.V., Molotkovskii Yu.G. 2008. Application of lipidconjugated chemotherapeutics in liposomes as a method to enhance anticancer effect of the drugs. Ros. bioterapevt. zhurn. (Rus.). 7(2), 24–33. Tsuruta W., Tsurushima H., Yamamoto T., Suzuki K., Yamazaki N., Matsumura A. 2009. Application of liposomes incorporating doxorubicin with sialyl Lewis X to prevent stenosis after rat carotid artery injury. Biomaterials. 30, 118–125. Gabizon A., Shiota R., Papahadjopoulos D. 1989. Pharmacokinetics and tissue distribution of doxorubicin encapsulated in stable liposomes with long circulation times. J. Natl. Cancer Inst. (Bethesda). 81, 1484–1488. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55–63. Mayer L.D., Hope M.J., Cullis P.R. 1986. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta. 858, 161–168. Funaki N.O., Tanaka J., Kohmoto M., Sugiyama T., Ohshio G., Nonaka A., Yotsumoto F., Takeda Y., Imamura M. 2001. Membrane fluidity correlates with liver cancer cell proliferation and infiltration potential. Oncol. Rep. 8, 527–532. Gabizon A., Papahadjopoulos D. 1988. Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc. Natl. Acad. Sci. USA. 85, 6949–6953. Moghimi S.M., Andersen A.J., Hashemi S.H., Lettiero B., Ahmadvand D., Hunter A.C., Andresen T.L., Hamad I., Szebeni J. 2010. Complement activation cascade triggered by PEG#PL engineered nanomedicines and carbon nanotubes: The challenges ahead. J. Control. Release. 146, 175–181. Karukstis K.K., Thompson E.H.Z., Whiles J.A., Rosenfeld R.J. 1998. Deciphering the fluorescence signature of daunomycin and doxorubicin. Biophys. Chem. 73, 249–263. Menezes D.E.L., Kirchmeier M.J., Gagne J.F., Pilarski L.M., Allen T.M. 1999. Cellular trafficking and cytotoxicity of anti-CD-targeted liposomal doxorubicin in B lymphoma cells. J. Liposome Res. 9, 199–228. Roepe P.D. 1992. Analysis of the steady-state and initial rate of doxorubicin efflux from a series of multidrugresistant cells expressing different levels of P-glycoprotein. Biochemistry. 31, 12555–12564. Cressman S., Dobson I., Lee J.B., Tam Y.Y.C., Cullis P.R. 2009. Synthesis of a labeled RGD-lipid, its incorporation into liposomal nanoparticles, and their trafficking in cultured endothelial cells. Bioconjugate Chem. 20, 1404–1411. Theodossiou T.A., Galanou M.C., Paleos C.M. 2008. Novel amiodarone-doxorubicin cocktail liposomes enhance doxorubicin retention and cytotoxicity in DU145 human prostate carcinoma cells. J. Med. Chem. 51, 6067–6074. Swift L.P., Rephaeli A., Nudelman A., Phillips D.R., Cutts S.M. 2006. Doxorubicin-DNA adducts induce a non-topoisomerase II-mediated form of cell death. Cancer Res. 66, 987–992. Gigli M., Doglia S.M., Millot J.M., Valentini L., Manfait M. 1988. Quantitalive study of doxorubicin in living cell nuclei by microspectrofluorometry. Biochim. Biophys. Acta. 950, 13–20. Fiallo M., Laigle A., Borrel M.N., Garnier-Suillerot A. 1993. Accumulation of degradation products of doxorubicin and pirarubicin formed in cell culture medium within sensitive and resistant cells. Biochem. Pharmacol. 45, 659–665. Hovorka O., Subr V., Vetvicka D., Kovar L., Strohalm J., Strohalm M., Benda A., Hof M., Ulbrich K., Rihova B. 2010. Spectral analysis of doxorubicin accumulation and the indirect quantification of its DNA intercalation. Eur. J. Pharm. Biopharm. 76, 514–524. Johannes L., Lamaze C. 2002. Clathrin-dependent or not: Is it still the question? Traffic. 3, 443–451. Yi X., Zimmerman M.C., Yang R., Tong J., Vinogradov S., Kabanov A.V. 2010. Pluronic-modified superoxide dismutase 1 attenuates angiotensin II-induced increase in intracellular superoxide in neurons. Free Radic. Biol. Med. 49, 548–558. Raggers R.J., Pomorski T., Holthuis J.C.M., Kälin N., van Meer G. 2000. Lipid traffic: The ABC of transbilayer movement. Traffic. 1, 226–234.