Interaction of indomethacin–cyclodextrins in water by UV–Vis and ITC
Tóm tắt
In this contribution, we analyze indomethacin–cyclodextrin (IMC–CD) inclusion by means of UV–Vis spectrophotometry and isothermal titration calorimetry (ITC) at 25 °C. Experiments were carried out in water at pH 5 and 7, using β-CD and 2-hydroxypropyl-β-cyclodextrin (2-HP-β-CD). The study with UV–Vis was made using a molar relation method analyzing the spectra with Stability Quotients from Absorbance Data (SQUAD) to obtain the inclusion constants. In the case of ITC, the study was performed in aqueous-phosphate buffer at pH 7. The values of ΔG, ΔH, − TΔS were determined for the first time for the inclusion of IMC within β-CD and 2-HP-β-CD. Results for logK1:1 obtained by ITC agree reasonably with those determined by UV–Vis, confirming the formation of a complex of stoichiometric ratio IMC:CD of 1:1. Besides the confirmation of formation of the inclusion complex, inclusion is exothermic, and given the sign of entropy it is suggested that IMC inclusion is driven by release of water molecules from the cavity of CD. With the values of logK1:1 we construct the diagrams of species distribution to compare which CD performs better in including IMC.
Tài liệu tham khảo
Valentovic, M.: Indomethacin. In: xPharm: The Comprehensive Pharmacology Reference, pp. 1–5. Elsevier, Amsterdam (2007)
Lucas, S.: The pharmacology of indomethacin. Headache J. Head Face Pain 56(2), 436–446 (2016)
Bernardi, A., Braganhol, E., Jäger, E., Figueiró, F., Edelweiss, M.I., Pohlmann, A.R., Guterres, S.S., Battastini, A.M.O.: Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett. 281(1), 53–63 (2009)
Ruidiaz, M.A., Mora Guerrero, C.D.P., Delgado, D.R., Yurquina, A., Martínez, F.: Estimation of the indomethacin solubility in ethanol + water mixtures by the extended Hildebrand solubility approach—Open Access Library. Rev. Colomb. Cienc. Quím. Farm. 39(1), 79–95 páginas (2010)
Lin, S.-Z., Wouessidjewe, D., Poelman, M.-C., Duchêne, D.: In vivo evaluation of indomethacin/cyclodextrin complexes gastrointestinal tolerance and dermal anti-inflammatory activity. Int. J. Pharm. 106(1), 63–67 (1994)
Kaneniwa, N., Otsuka, M., Hayashi, T.: Physicochemical characterization of indomethacin polymorphs and the transformation kinetics in ethanol. Chem. Pharm. Bull. (Tokyo) 33(8), 3447–3455 (1985)
Otsuka, M., Matsumoto, T., Kaneniwa, N.: Effect of environmental temperature on polymorphic solid-state transformation of indomethacin during grinding. Chem. Pharm. Bull. (Tokyo) 34, 1784–1793 (1986)
Hancock, B.C., Parks, M.: What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res. 17(4), 397–404 (2000)
Murdande, S.B., Pikal, M.J., Shanker, R.M., Bogner, R.H.: Solubility advantage of amorphous pharmaceuticals: I. A thermodynamic analysis. J. Pharm. Sci. 99(3), 1254–1264 (2010)
Ito, T., Sugafuji, T., Maruyama, M., Ohwa, Y., Takahashi, T.: Skin penetration by indomethacin is enhanced by use of an indomethacin/smectite complex. J. Supramol. Chem. 1(4–6), 217–219 (2001)
Hamada, Y., Nambu, N., Nagai, T.: Interactions of α- and β-cyclodextrin with several non-steroidal antiinflammatory drugs in aqueous solution. Chem. Pharm. Bull. (Tokyo) 23(6), 1205–1211 (1975)
Backensfeld, T., Müller, B.W., Wiese, M., Seydel, J.K.: Effect of cyclodextrin derivatives on indomethacin stability in aqueous solution. Pharm. Res. Off. J. Am. Assoc. Pharm. Sci. 7(5), 484–490 (1990)
Casella, R., Williams, D., Jambhekar, S.: Solid-state β-cyclodextrin complexes containing indomethacin, ammonia and water. I. Formation studies. Int. J. Pharm. 165(1), 1–14 (1998)
Jambhekar, S., Casella, R., Maher, T.: The physicochemical characteristics and bioavailability of indomethacin from β-cyclodextrin, hydroxyethyl-β-cyclodextrin, and hydroxypropyl-β-cyclodextrin complexes. Int. J. Pharm. 270(1–2), 149–166 (2004)
Crini, G.: Review: a history of cyclodextrins. Chem. Rev. 114(21), 10940–10975 (2014)
Wu, C.-Y., Benet, L.Z.: Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res. 22(1), 11–23 (2005)
Rudrangi, S.R.S., Bhomia, R., Trivedi, V., Vine, G.J., Mitchell, J.C., Alexander, B.D., Wicks, S.R.: Influence of the preparation method on the physicochemical properties of indomethacin and methyl-β-cyclodextrin complexes. Int. J. Pharm. 479(2), 381–390 (2015)
Kurkov, S.V., Loftsson, T.: Cyclodextrins. Int. J. Pharm. 453(1), 167–180 (2013)
Li, J., Zhang, X.: Preparation and characterization of the inclusion complex of ofloxacin with β-CD and HP-β-CD. J. Incl. Phenom. Macrocycl. Chem. 69(1–2), 173–179 (2011)
Ol’khovich, M.V., Sharapova, A.V., Blokhina, S.V., Skachilova, S.Y., Kesarev, O.G., Perlovich, G.L.: Physicochemical characteristics of the inclusion complexes of biologically active compounds with 2-hydroxypropyl-β-cyclodextrin. Thermochim. Acta 639, 1–9 (2016)
Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85(10), 1017–1025 (1996)
Jambhekar, S.S., Breen, P.: Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex. Drug Discov. Today 21(2), 356–362 (2016)
Jelesarov, I., Bosshard, H.R.: Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 12(1), 3–18 (1999)
Buckton, G., Beezer, A.E.: The applications of microcalorimetry in the field of physical pharmacy. Int. J. Pharm. 72(3), 181–191 (1991)
Sun, D., Li, L., Qiu, X., Liu, M., Yin, B.: Cyclodextrins binding to paeonol and two of its isomers in aqueous solution. Isothermal titration calorimetry and 1H NMR investigations of molecular recognition. J. Solut. Chem. 35(11), 1537–1549 (2006)
Guzmán-Hernández, D.S., Ramírez-Silva, M.T., Rojas-Hernández, A., Corona-Avendaño, S., Romero-Romo, M., Palomar-Pardavé, M.: Spectrophotometric and electrochemical quantification of the host–guest interaction of tenoxicam and β-CD in aqueous solution at different pH values. J. Electroanal. Chem. 738, 20–26 (2015)
Kulkarni, S., Gupta, S.P., Upmanyu, N., Tonpay, S.D.: Solubility enhancement of water insoluble drug for ophthalmic formulation. Int. J. Drug Deliv. 3(1), 141–148 (2011)
Rodríguez-Laguna, N., Reyes-García, L.I., Moya-Hernández, R., Rojas-Hernández, A., Gómez-Balderas, R.: Chemical speciation of the system Cu(II)–indomethacin in ethanol and water by UV–Vis spectrophotometry. J. Chem. 2016, 1–12 (2016)
Leggett, D.J.: Computational Methods for the Determination of Formation Constants. Plenum Press, New York (1985)
Malvern Instruments Ltd.: Microcal PEAQ-ITC Analysis Software. Malvern, Worcestershire (2014)
Iohara, D., Hirayama, F., Ishiguro, T., Arima, H., Uekama, K.: Preparation of amorphous indomethacin from aqueous 2,6-di-O-methyl-β-cyclodextrin solution. Int. J. Pharm. 354(1–2), 70–76 (2008)
Todorova, N.A., Schwarz, F.P.: The role of water in the thermodynamics of drug binding to cyclodextrin. J. Chem. Thermodyn. 39(7), 1038–1048 (2007)
Didi, M.A., Medjahed, B., Benaouda, W.: Adsorption by liquid–liquid extraction of Hg(II) from aqueous solutions using the 2-butyl-imidazolium di-(2-ethylhexyl) phosphate as ionic liquid. Am. J. Anal. Chem. 04(07), 40–47 (2013)
Eriksson, G.: An algorithm for the computation of aqueous multi-component, multiphase equilibria. Anal. Chim. Acta 112(4), 375–383 (1979)
Ingri, N., Kakolowicz, W., Sillén, L.G., Warnqvist, B.: High-speed computers as a supplement to graphical methods—V1: Haltafall, a general program for calculating the composition of equilibrium mixtures. Talanta 14(11), 1261–1286 (1967)
Yalkowsky, S.H., He, Y., Jain, P.: Handbook of Aqueous Solubility Data. CRC Press, Boca Raton (2010)