Interaction of convective plasma and small-scale magnetic fields in the lower solar atmosphere

S. Vargas Domínguez1, D. Utz2
1Observatorio Astronómico Nacional, Universidad Nacional de Colombia, Bogota, Colombia
2Institute of Physics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic

Tóm tắt

AbstractIn the following short review we will outline some of the possible interaction processes of lower solar atmospheric plasma with the embedded small-scale solar magnetic fields. After introducing the topic, important types of small-scale solar magnetic field elements are outlined to then focus on their creation and evolution, and finally end up describing foremost processes these magnetic fields are involved in, such as the reconnection of magnetic field lines and the creation of magneto-hydrodynamic waves. The occurrence and global coverage in the solar atmosphere of such small-scale phenomena surpass on average those of the more explosive and intense events, mainly related to solar active regions and, therefore, their key role as building blocks of solar activity even during the weaker phases of the 11-year solar cycle. In particular, understanding the finest ingredients of solar activity from the lower to the upper solar atmosphere could be determinant to fully understand the heating of the solar corona, which stands out as one of the most intriguing problems in astrophysics nowadays.

Từ khóa


Tài liệu tham khảo

W.P. Abbett, The magnetic connection between the convection zone and corona in the quiet sun. ApJ 665(2), 1469–1488 (2007). https://doi.org/10.1086/519788

V. Abramenko, V. Yurchyshyn, P. Goode, A. Kilcik, Statistical distribution of size and lifetime of bright points observed with the new solar telescope. ApJ 725, 101–105 (2010). https://doi.org/10.1088/2041-8205/725/1/L101. arXiv:1012.1584 [astro-ph.SR]

A.A. Aldhafeeri, G. Verth, W. Brevis, D.B. Jess, M. McMurdo, V. Fedun, Magnetohydrodynamic wave modes of solar magnetic flux tubes with an elliptical cross section. ApJ 912(1), 50 (2021). https://doi.org/10.3847/1538-4357/abec7a

A. Alharbi, I. Ballai, V. Fedun, G. Verth, Waves in weakly ionized solar plasmas. MNRAS 511(4), 5274–5286 (2022). https://doi.org/10.1093/mnras/stac444. arXiv:2202.07387 [astro-ph.SR]

Y. Aljohani, V. Fedun, I. Ballai, S.S.A. Silva, S. Shelyag, G. Verth, New approach for analyzing dynamical processes on the surface of photospheric vortex tubes. ApJ 928(1), 3 (2022). https://doi.org/10.3847/1538-4357/ac56db. arXiv:2202.09332 [physics.flu-dyn]

J.S. Almeida, A.A. Ramos, J.T. Bueno, J. Cernicharo, G-band spectral synthesis in solar magnetic concentrations. ApJ 555(2), 978–989 (2001). https://doi.org/10.1086/321521. arXiv:astro-ph/0103006 [astro-ph]

T.D. Arber, C.S. Brady, S. Shelyag, Alfvén wave heating of the solar chromosphere: 1.5D models. ApJ 817(2), 94 (2016). https://doi.org/10.3847/0004-637X/817/2/94. arXiv:1512.05816 [astro-ph.SR]

V. Archontis, F. Moreno-Insertis, K. Galsgaard, A.W. Hood, The three-dimensional interaction between emerging magnetic flux and a large-scale coronal field: reconnection, current sheets, and jets. ApJ 635(2), 1299–1318 (2005). https://doi.org/10.1086/497533

I. Ballai, R. Erdélyi, J. Hargreaves, Slow magnetohydrodynamic waves in stratified and viscous plasmas. Phys. Plasmas 13(4), 042108 (2006). https://doi.org/10.1063/1.2194847

I. Ballai, E. Forgács-Dajka, A. Marcu, Dispersive shock waves in partially ionised plasmas. Adv. Space Res. 63(4), 1472–1482 (2019). https://doi.org/10.1016/j.asr.2018.10.024. arXiv:1810.07948 [astro-ph.SR]

M. Bárta, J. Büchner, M. Karlický, J. Skála, Spontaneous current-layer fragmentation and cascading reconnection in solar flares. I. Model and analysis. ApJ 737(1), 24 (2011) arXiv:1011.4035 [astro-ph.SR]. https://doi.org/10.1088/0004-637X/737/1/24

A.F. Battaglia, J.R.C. Cuissa, F. Calvo, A.A. Bossart, O. Steiner, The Alfvénic nature of chromospheric swirls. A &A 649, 121 (2021). https://doi.org/10.1051/0004-6361/202040110. arXiv:2103.07366 [astro-ph.SR]

C. Beck, L.R.B. Rubio, R. Schlichenmaier, P. Sütterlin, Magnetic properties of G-band bright points in a sunspot moat. A &A 472, 607–622 (2007). https://doi.org/10.1051/0004-6361:20065620. arXiv:0707.1232

T.E. Berger, S.V. Berdyugina, The observation of sunspot light-bridge structure and dynamics. ApJ 589(2), 117–121 (2003). https://doi.org/10.1086/376494

T.E. Berger, L.H.M.R. van der Voort, M.G. Löfdahl, M. Carlsson, A. Fossum, V.H. Hansteen, E. Marthinussen, A. Title, G. Scharmer, Solar magnetic elements at 0.1 arcsec resolution General appearance and magnetic structure. A &A 428, 613–628 (2004). https://doi.org/10.1051/0004-6361:20040436

L. Biermann, Über die Ursache der chromosphärischen Turbulenz und des UV-Exzesses der Sonnenstrahlung. ZAp 25, 161 (1948)

J.A. Bonet, I. Márquez, J.S. Almeida, I. Cabello, V. Domingo, Convectively driven vortex flows in the sun. ApJ 687, 131–134 (2008). https://doi.org/10.1086/593329. arXiv:0809.3885

J.M. Borrero, S. Jafarzadeh, M. Schüssler, S.K. Solanki, Solar magnetoconvection and small-scale dynamo—recent developments in observation and simulation. Space Sci. Rev. (2015). https://doi.org/10.1007/s11214-015-0204-5. arXiv:1511.04214 [astro-ph.SR]

J.M. Borrero, S. Jafarzadeh, M. Schüssler, S.K. Solanki, Solar magnetoconvection and small-scale dynamo. recent developments in observation and simulation. Space Sci. Rev. 210(1–4), 275–316 (2017). https://doi.org/10.1007/s11214-015-0204-5. arXiv:1511.04214 [astro-ph.SR]

R.J. Bray, R.E. Loughhead, Sunspots, (1964)

P.S. Cally, E. Khomenko, Fast-to-Alfvén mode conversion and ambipolar heating in structured media. I. Simplified cold plasma model. ApJ 885(1), 58 (2019). https://doi.org/10.3847/1538-4357/ab3bce

R. Cameron, M. Schüssler, A. Vögler, V. Zakharov, Radiative magnetohydrodynamic simulations of solar pores. A &A 474(1), 261–272 (2007). https://doi.org/10.1051/0004-6361:20078140

M. Carlsson, R.F. Stein, Å. Nordlund, G.B. Scharmer, Observational manifestations of solar magnetoconvection: center-to-limb variation. ApJ 610(2), 137–140 (2004). https://doi.org/10.1086/423305. arXiv:astro-ph/0406160 [astro-ph]

M. Carlsson, V.H. Hansteen, B. de Pontieu, S. McIntosh, T.D. Tarbell, D. Shine, S. Tsuneta, Y. Katsukawa, K. Ichimoto, Y. Suematsu, T. Shimizu, S. Nagata, Can high frequency acoustic waves heat the quiet sun chromosphere? PASJ 59, 663 (2007). https://doi.org/10.1093/pasj/59.sp3.S663. arXiv:0709.3462 [astro-ph]

R. Centeno, H. Socas-Navarro, B. Lites, M. Kubo, Z. Frank, R. Shine, T. Tarbell, A. Title, K. Ichimoto, S. Tsuneta, Y. Katsukawa, Y. Suematsu, T. Shimizu, S. Nagata, Emergence of small-scale magnetic loops in the quiet-sun internetwork. ApJ 666(2), 137–140 (2007). https://doi.org/10.1086/521726

R. Centeno, J. B. Rodríguez, J.C. Del Toro Iniesta, S.K. Solanki, P. Barthol, A. Gandorfer, L. Gizon, J. Hirzberger, T.L. Riethmüller, M. van Noort, D. O. Suárez, T. Berkefeld, W. Schmidt, V. M. Pillet, M. Knölker, A tale of two emergences: sunrise II observations of emergence sites in a solar active region. ApJS, 229(1), 3 (2017). https://doi.org/10.3847/1538-4365/229/1/3. arXiv:1610.03531 [astro-ph.SR]

P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Solar Phys. 17(1), 4 (2020). https://doi.org/10.1007/s41116-020-00025-6

M.C.M. Cheung, M. Schüssler, T.D. Tarbell, A.M. Title, Solar surface emerging flux regions: a comparative study of radiative mhd modeling and Hinode SOT observations. ApJ 687(2), 1373–1387 (2008). https://doi.org/10.1086/591245. arXiv:0810.5723 [astro-ph]

L.P. Chitta, R. Jain, R. Kariyappa, S.M. Jefferies, Observations of the interaction of acoustic waves and small-scale magnetic fields in a quiet sun. ApJ 744, 98 (2012). https://doi.org/10.1088/0004-637X/744/2/98

I.-H. Cho, K.-S. Cho, S.-C. Bong, E.-K. Lim, R.-S. Kim, S. Choi, Y.-H. Kim, V. Yurchyshyn, Statistical comparison between pores and sunspots by using SDO/HMI. ApJ 811(1), 49 (2015). https://doi.org/10.1088/0004-637X/811/1/49

A.R. Choudhuri, H. Auffret, E.R. Priest, Implications of rapid footpoint motions of photospheric flux tubes for coronal heating. Sol. Phys. 143, 49–68 (1993)

S.R. Cranmer, A.A. van Ballegooijen, On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliosphere. ApJ 156, 265–293 (2005). https://doi.org/10.1086/426507. arXiv:astro-ph/0410639

P.J. Crockett, M. Mathioudakis, D.B. Jess, S. Shelyag, F.P. Keenan, D.J. Christian, The area distribution of solar magnetic bright points. ApJ 722, 188–193 (2010). https://doi.org/10.1088/2041-8205/722/2/L188. arXiv:1009.2410 [astro-ph.SR]

S. Danilovic, M. Schüssler, S.K. Solanki, Magnetic field intensification: comparison of 3D MHD simulations with Hinode/SP results. A &A 509, 76 (2010). https://doi.org/10.1051/0004-6361/200912283. arXiv:0910.1211 [astro-ph.SR]

J. de la Cruz Rodríguez, V. Hansteen, L. Bellot-Rubio, A. Ortiz, Emergence of granular-sized magnetic bubbles through the solar atmosphere II non-LTE chromospheric diagnostics and inversions. ApJ 810(2), 145 (2015). https://doi.org/10.1088/0004-637X/810/2/145. arXiv:1503.03846 [astro-ph.SR]

B. De Pontieu, M. Carlsson, L.H.M.R. van der Voort, R.J. Rutten, V.H. Hansteen, H. Watanabe, Ubiquitous torsional motions in type II spicules. ApJ 752(1), 12 (2012). https://doi.org/10.1088/2041-8205/752/1/L12. arXiv:1205.5006 [astro-ph.SR]

B. De Pontieu, A.M. Title, J.R. Lemen, G.D. Kushner, D.J. Akin, B. Allard, T. Berger, P. Boerner, M. Cheung, C. Chou, J.F. Drake, D.W. Duncan, S. Freeland, G.F. Heyman, C. Hoffman, N.E. Hurlburt, R.W. Lindgren, D. Mathur, R. Rehse, D. Sabolish, R. Seguin, C.J. Schrijver, T.D. Tarbell, J.-P. Wülser, C.J. Wolfson, C. Yanari, J. Mudge, N. Nguyen-Phuc, R. Timmons, R. van Bezooijen, I. Weingrod, R. Brookner, G. Butcher, B. Dougherty, J. Eder, V. Knagenhjelm, S. Larsen, D. Mansir, L. Phan, P. Boyle, P.N. Cheimets, E.E. DeLuca, L. Golub, R. Gates, E. Hertz, S. McKillop, S. Park, T. Perry, W.A. Podgorski, K. Reeves, S. Saar, P. Testa, H. Tian, M. Weber, C. Dunn, S. Eccles, S.A. Jaeggli, C.C. Kankelborg, K. Mashburn, N. Pust, L. Springer, R. Carvalho, L. Kleint, J. Marmie, E. Mazmanian, T.M.D. Pereira, S. Sawyer, J. Strong, S.P. Worden, M. Carlsson, V.H. Hansteen, J. Leenaarts, M. Wiesmann, J. Aloise, K.-C. Chu, R.I. Bush, P.H. Scherrer, P. Brekke, J. Martinez-Sykora, B.W. Lites, S.W. McIntosh, H. Uitenbroek, T.J. Okamoto, M.A. Gummin, G. Auker, P. Jerram, P. Pool, N. Waltham, The interface region imaging spectrograph (IRIS). Sol. Phys. 289, 2733–2779 (2014). https://doi.org/10.1007/s11207-014-0485-y. arXiv:1401.2491 [astro-ph.SR]

A.G. de Wijn, B.W. Lites, T.E. Berger, Z.A. Frank, T.D. Tarbell, R. Ishikawa, Hinode observations of magnetic elements in internetwork areas. ApJ 684, 1469–1476 (2008). https://doi.org/10.1086/590237

Y.Y. Deng, CGST Group: Introduction to the Chinese Giant Solar Telescope. In: Astronomical Society of India Conference Series. Astronomical Society of India Conference Series, vol. 2, pp. 31–36 (2011)

S.V. Dominguez, Study of horizontal flows in solar active regions based on high-resolution image reconstruction techniques. PhD thesis, (2009). https://doi.org/10.48550/arXiv.0906.0336

I. Domínguez Cerdeña, J. Sánchez Almeida, F. Kneer, Inter-network magnetic fields observed with sub-arcsec resolution. A &A 407, 741–757 (2003). https://doi.org/10.1051/0004-6361:20030892. arXiv:astro-ph/0306329 [astro-ph]

S.V. Domínguez, A. de Vicente, J.A. Bonet, V.M. Pillet, Characterization of horizontal flows around solar pores from high-resolution time series of images. A &A 516, 91 (2010). https://doi.org/10.1051/0004-6361/200913264

S.V. Domínguez, J. Palacios, L. Balmaceda, I. Cabello, V. Domingo, Spatial distribution and statistical properties of small-scale convective vortex-like motions in a quiet-Sun region. MNRAS 416(1), 148–154 (2011). https://doi.org/10.1111/j.1365-2966.2011.19048.x. arXiv:1105.3092 [astro-ph.SR]

S.V. Domínguez, L. van Driel-Gesztelyi, L.R.B. Rubio, Granular-scale elementary flux emergence episodes in a solar active region. Sol. Phys. 278(1), 99–120 (2012). https://doi.org/10.1007/s11207-012-9968-x. arXiv:1203.6428 [astro-ph.SR]

S.V. Domínguez, A. Kosovichev, V. Yurchyshyn, Multi-wavelength High-resolution observations of a small-scale emerging magnetic flux event and the chromospheric and coronal response. ApJ 794(2), 140 (2014). https://doi.org/10.1088/0004-637X/794/2/140. arXiv:1405.3550 [astro-ph.SR]

F.M. Dover, R. Sharma, R. Erdélyi, Magnetohydrodynamic simulations of spicular jet propagation applied to lower solar atmosphere model. ApJ 913(1), 19 (2021). https://doi.org/10.3847/1538-4357/abefd1

R.B. Dunn, J.B. Zirker, The solar filigree. Sol. Phys. 33, 281–304 (1973). https://doi.org/10.1007/BF00152419

P.M. Edwin, B. Roberts, Wave propagation in a magnetic cylinder. Sol. Phys. 88(1–2), 179–191 (1983). https://doi.org/10.1007/BF00196186

R. Erdélyi, I. Ballai, Resonant absorption of nonlinear slow MHD waves in isotropic steady plasmas—II. Application: resonant acoustic waves. Sol. Phys. 186, 67–97 (1999). https://doi.org/10.1023/A:1005177815154

I. Ermolli, A. Cristaldi, F. Giorgi, F. Giannattasio, M. Stangalini, P. Romano, A. Tritschler, F. Zuccarello, Plasma flows and magnetic field interplay during the formation of a pore. A &A 600, 102 (2017). https://doi.org/10.1051/0004-6361/201526144. arXiv:1701.06440 [astro-ph.SR]

V. Fedun, S. Shelyag, R. Erdélyi, Numerical modeling of footpoint-driven magneto-acoustic wave propagation in a localized solar flux tube. ApJ 727, 17 (2011). https://doi.org/10.1088/0004-637X/727/1/17

V. Fedun, S. Shelyag, G. Verth, M. Mathioudakis, R. Erdélyi, MHD waves generated by high-frequency photospheric vortex motions. Annales Geophysicae 29(6), 1029–1035 (2011). https://doi.org/10.5194/angeo-29-1029-2011

C.E. Fischer, A.G. de Wijn, R. Centeno, B.W. Lites, C.U. Keller, Statistics of convective collapse events in the photosphere and chromosphere observed with the Hinode SOT. A &A 504, 583–588 (2009). https://doi.org/10.1051/0004-6361/200912445. arXiv:0906.2308 [astro-ph.SR]

N.J. Fox, M.C. Velli, S.D. Bale, R. Decker, A. Driesman, R.A. Howard, J.C. Kasper, J. Kinnison, M. Kusterer, D. Lario, M.K. Lockwood, D.J. McComas, N.E. Raouafi, A. Szabo, The solar probe plus mission: humanity’s first visit to our star. Space Sci. Rev. 204(1–4), 7–48 (2016). https://doi.org/10.1007/s11214-015-0211-6

M. García-Rivas, J. Jurčák, N.B. González, Magnetic properties on the boundary of an evolving pore. A &A 649, 129 (2021). https://doi.org/10.1051/0004-6361/202039661. arXiv:2102.08459 [astro-ph.SR]

F.A. Gent, V. Fedun, S.J. Mumford, R. Erdélyi, Magnetohydrostatic equilibrium—I. Three-dimensional open magnetic flux tube in the stratified solar atmosphere. MNRAS 435(1), 689–697 (2013). https://doi.org/10.1093/mnras/stt1328. arXiv:1305.4788 [astro-ph.SR]

I. Giagkiozis, V. Fedun, E. Scullion, D.B. Jess, G. Verth, Vortex flows in the solar atmosphere: automated identification and statistical analysis. ApJ 869(2), 169 (2018). https://doi.org/10.3847/1538-4357/aaf797

C.A. Gilchrist-Millar, D.B. Jess, S.D.T. Grant, P.H. Keys, C. Beck, S. Jafarzadeh, J.M. Riedl, T. Van Doorsselaere, B.R. Cobo, Magnetoacoustic wave energy dissipation in the atmosphere of solar pores. Philos. Trans. R. Soc. Lond. Ser. A 379(2190), 20200172 (2021). https://doi.org/10.1098/rsta.2020.0172. arXiv:2007.11594 [astro-ph.SR]

P. Gömöry, C. Beck, H. Balthasar, J. Rybák, A. Kučera, J. Koza, H. Wöhl, Magnetic loop emergence within a granule. A &A 511, 14 (2010). https://doi.org/10.1051/0004-6361/200912807. arXiv:0910.4449 [astro-ph.SR]

M.J.M. González, L.R.B. Rubio, Emergence of small-scale magnetic loops through the quiet solar atmosphere. ApJ 700(2), 1391–1403 (2009). https://doi.org/10.1088/0004-637X/700/2/1391. arXiv:0905.2691 [astro-ph.SR]

P.R. Goode, R. Coulter, N. Gorceix, V. Yurchyshyn, W. Cao, The NST: first results and some lessons for ATST and EST. Astronomische Nachrichten 331(6), 620 (2010). https://doi.org/10.1002/asna.201011387

M. Gošić, L.R.B. Rubio, D.O. Suárez, Y. Katsukawa, J.C. del Toro Iniesta, The solar internetwork. I. Contribution to the network magnetic flux. ApJ 797(1), 49 (2014). https://doi.org/10.1088/0004-637X/797/1/49. arXiv:1408.2369 [astro-ph.SR]

M. Gošić, L.R.B. Rubio, J.C. del Toro Iniesta, D.O. Suárez, Y. Katsukawa, The solar internetwork II flux appearance and disappearance rates. ApJ 820(1), 35 (2016). https://doi.org/10.3847/0004-637X/820/1/35. arXiv:1602.05892 [astro-ph.SR]

M. Gošić, J. de la Cruz Rodríguez, B. De Pontieu, L.R.B. Rubio, M. Carlsson, S.E. Pozuelo, A. Ortiz, V. Polito, Chromospheric heating due to cancellation of quiet sun internetwork fields. ApJ 857(1), 48 (2018). https://doi.org/10.3847/1538-4357/aab1f0. arXiv:1802.07392 [astro-ph.SR]

S.D.T. Grant, D.B. Jess, M.G. Moreels, R.J. Morton, D.J. Christian, I. Giagkiozis, G. Verth, V. Fedun, P.H. Keys, T. Van Doorsselaere, R. Erdélyi, Wave damping observed in upwardly propagating sausage-mode oscillations contained within a magnetic pore. ApJ 806(1), 132 (2015). https://doi.org/10.1088/0004-637X/806/1/132. arXiv:1505.01484 [astro-ph.SR]

S.L. Guglielmino, F. Zuccarello, P.R. Young, M. Murabito, P. Romano, IRIS observations of magnetic interactions in the solar atmosphere between preexisting and emerging magnetic fields. I. Overall evolution. ApJ 856(2), 127 (2018). https://doi.org/10.3847/1538-4357/aab2a8. arXiv:1802.05657 [astro-ph.SR]

Y. Guo, P. Démoulin, B. Schmieder, M.D. Ding, S.V. Domínguez, Y. Liu, Recurrent coronal jets induced by repetitively accumulated electric currents. A &A 555, 19 (2013). https://doi.org/10.1051/0004-6361/201321229. arXiv:1305.0902 [astro-ph.SR]

H.J. Hagenaar, Ephemeral regions on a sequence of full-disk Michelson Doppler imager magnetograms. ApJ 555(1), 448–461 (2001). https://doi.org/10.1086/321448

H.J. Hagenaar, C.J. Schrijver, A.M. Title, R.A. Shine, Dispersal of magnetic flux in the quiet solar photosphere. ApJ 511, 932–944 (1999). https://doi.org/10.1086/306691

V. Hansteen, A. Ortiz, V. Archontis, M. Carlsson, T.M.D. Pereira, J.P. Bjørgen, Ellerman bombs and UV bursts: transient events in chromospheric current sheets. A &A 626, 33 (2019). https://doi.org/10.1051/0004-6361/201935376. arXiv:1904.11524 [astro-ph.SR]

Q. Hao, C. Fang, M.D. Ding, Z. Li, W. Cao, Spectral diagnostics of solar photospheric bright points. ApJ 900(2), 130 (2020). https://doi.org/10.3847/1538-4357/aba692. arXiv:2007.09675 [astro-ph.SR]

S.S. Hasan, National Large Solar Telescope of India. In: Astronomical Society of India Conference Series. Astronomical Society of India Conference Series, vol. 2, pp. 37–45 (2011)

L. Heggland, B. De Pontieu, V.H. Hansteen, Observational signatures of simulated reconnection events in the solar chromosphere and transition region. ApJ 702, 1–18 (2009). https://doi.org/10.1088/0004-637X/702/1/1. arXiv:0902.0977 [astro-ph.SR]

S.J. Hofmeister, D. Utz, S.G. Heinemann, A. Veronig, M. Temmer, Photospheric magnetic structure of coronal holes. A &A 629, 22 (2019). https://doi.org/10.1051/0004-6361/201935918. arXiv:1909.03806 [astro-ph.SR]

R. Ishikawa, S. Tsuneta, The relationship between vertical and horizontal magnetic fields in the quiet sun. ApJ 735(2), 74 (2011). https://doi.org/10.1088/0004-637X/735/2/74. arXiv:1103.5556

H. Isobe, D. Tripathi, V. Archontis, Ellerman bombs and jets associated with resistive flux emergence. ApJ 657(1), 53–56 (2007). https://doi.org/10.1086/512969

S. Jafarzadeh, S.K. Solanki, A. Feller, A. Lagg, A. Pietarila, S. Danilovic, T.L. Riethmüller, V.M. Pillet, Structure and dynamics of isolated internetwork Ca II H bright points observed by SUNRISE. A &A 549, 116 (2013). https://doi.org/10.1051/0004-6361/201220089. arXiv:1211.4836 [astro-ph.SR]

S. Jafarzadeh, S.K. Solanki, M. Stangalini, O. Steiner, R.H. Cameron, S. Danilovic, High-frequency oscillations in small magnetic elements observed with sunrise/SuFI. ApJS 229(1), 10 (2017). https://doi.org/10.3847/1538-4365/229/1/10. arXiv:1611.09302 [astro-ph.SR]

D.B. Jess, M. Mathioudakis, R. Erdélyi, P.J. Crockett, F.P. Keenan, D.J. Christian, Alfvén waves in the lower solar atmosphere. Science 323, 1582 (2009). https://doi.org/10.1126/science.1168680. arXiv:0903.3546 [astro-ph.SR]

D.B. Jess, R.J. Morton, G. Verth, V. Fedun, S.D.T. Grant, I. Giagkiozis, Multiwavelength studies of MHD waves in the solar chromosphere. An overview of recent results. Space Sci. Rev. 190(1–4), 103–161 (2015). https://doi.org/10.1007/s11214-015-0141-3. arXiv:1503.01769 [astro-ph.SR]

J. Jiang, D.H. Hathaway, R.H. Cameron, S.K. Solanki, L. Gizon, L. Upton, Magnetic flux transport at the solar surface. Space Sci. Rev. 186(1–4), 491–523 (2014). https://doi.org/10.1007/s11214-014-0083-1. arXiv:1408.3186 [astro-ph.SR]

C.L. Jin, J.X. Wang, The latitude distribution of small-scale magnetic elements in solar cycle 23. ApJ 745, 39 (2012). https://doi.org/10.1088/0004-637X/745/1/39

P.J. Käpylä, M.J. Käpylä, A. Brandenburg, Small-scale dynamos in simulations of stratified turbulent convection. Astronomische Nachrichten 339(127), 127–133 (2018). https://doi.org/10.1002/asna.201813477. arXiv:1802.09607 [astro-ph.SR]

P. Kayshap, A.K. Srivastava, S.K. Tiwari, P. Jelínek, M. Mathioudakis, Propagation of waves above a plage as observed by IRIS and SDO. A &A 634, 63 (2020). https://doi.org/10.1051/0004-6361/201936070. arXiv:1910.11557 [astro-ph.SR]

C.U. Keller, M. Schüssler, A. Vögler, V. Zakharov, On the origin of solar faculae. ApJ 607(1), 59–62 (2004). https://doi.org/10.1086/421553

P.H. Keys, M. Mathioudakis, D.B. Jess, S. Shelyag, P.J. Crockett, D.J. Christian, F.P. Keenan, The velocity distribution of solar photospheric magnetic bright points. ApJ 740, 40 (2011). https://doi.org/10.1088/2041-8205/740/2/L40. arXiv:1109.3565 [astro-ph.SR]

P.H. Keys, R.J. Morton, D.B. Jess, G. Verth, S.D.T. Grant, M. Mathioudakis, D.H. Mackay, J.G. Doyle, D.J. Christian, F.P. Keenan, R. Erdélyi, Photospheric observations of surface and body modes in solar magnetic pores. ApJ 857(1), 28 (2018). https://doi.org/10.3847/1538-4357/aab432. arXiv:1803.01859 [astro-ph.SR]

P.H. Keys, A. Reid, M. Mathioudakis, S. Shelyag, V.M.J. Henriques, R.L. Hewitt, D. Del Moro, S. Jafarzadeh, D.B. Jess, M. Stangalini, The magnetic properties of photospheric magnetic bright points with high-resolution spectropolarimetry. MNRAS 488(1), 53–58 (2019). https://doi.org/10.1093/mnrasl/slz097. arXiv:1906.07687 [astro-ph.SR]

P.H. Keys, A. Reid, M. Mathioudakis, S. Shelyag, V.M.J. Henriques, R.L. Hewitt, D. Del Moro, S. Jafarzadeh, D.B. Jess, M. Stangalini, High-resolution spectropolarimetric observations of the temporal evolution of magnetic fields in photospheric bright points. A &A 633, 60 (2020). https://doi.org/10.1051/0004-6361/201936545. arXiv:1911.08436 [astro-ph.SR]

T. Kosugi, K. Matsuzaki, T. Sakao, T. Shimizu, Y. Sone, S. Tachikawa, T. Hashimoto, K. Minesugi, A. Ohnishi, T. Yamada, S. Tsuneta, H. Hara, K. Ichimoto, Y. Suematsu, M. Shimojo, T. Watanabe, S. Shimada, J.M. Davis, L.D. Hill, J.K. Owens, A.M. Title, J.L. Culhane, L.K. Harra, G.A. Doschek, L. Golub, The Hinode (solar-B) mission: an overview. Sol. Phys. 243, 3–17 (2007). https://doi.org/10.1007/s11207-007-9014-6

C. Kuckein, Height variation of magnetic field and plasma flows in isolated bright points. A &A 630, 139 (2019). https://doi.org/10.1051/0004-6361/201935856. arXiv:1909.05550 [astro-ph.SR]

J. Leenaarts, Radiation hydrodynamics in simulations of the solar atmosphere. Living Rev. Solar Phys. 17(1), 3 (2020). https://doi.org/10.1007/s41116-020-0024-x. arXiv:2002.03623 [astro-ph.SR]

J.R. Lemen, A.M. Title, D.J. Akin, P.F. Boerner, C. Chou, J.F. Drake, D.W. Duncan, C.G. Edwards, F.M. Friedlaender, G.F. Heyman, N.E. Hurlburt, N.L. Katz, G.D. Kushner, M. Levay, R.W. Lindgren, D.P. Mathur, E.L. McFeaters, S. Mitchell, R.A. Rehse, C.J. Schrijver, L.A. Springer, R.A. Stern, T.D. Tarbell, J.-P. Wuelser, C.J. Wolfson, C. Yanari, J.A. Bookbinder, P.N. Cheimets, D. Caldwell, E.E. Deluca, R. Gates, L. Golub, S. Park, W.A. Podgorski, R.I. Bush, P.H. Scherrer, M.A. Gummin, P. Smith, G. Auker, P. Jerram, P. Pool, R. Soufli, D.L. Windt, S. Beardsley, M. Clapp, J. Lang, N. Waltham, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 275(1–2), 17–40 (2012). https://doi.org/10.1007/s11207-011-9776-8

Q. Li, N. Deng, J. Jing, C. Liu, H. Wang, High-resolution observation of moving magnetic features. ApJ 876(2), 129 (2019). https://doi.org/10.3847/1538-4357/ab18aa

B.W. Lites, K.D. Leka, A. Skumanich, V.M. Pillet, T. Shimizu, Small-scale horizontal magnetic fields in the solar photosphere. ApJ 460, 1019 (1996). https://doi.org/10.1086/177028

Y. Liu, Y. Xiang, R. Erdélyi, Z. Liu, D. Li, Z. Ning, Y. Bi, N. Wu, J. Lin, Studies of isolated and non-isolated photospheric bright points in an active region observed by the new vacuum solar telescope. ApJ 856(1), 17 (2018). https://doi.org/10.3847/1538-4357/aab150

Q.Y. Luo, F.S. Wei, X.S. Feng, Excitation and dissipation of torsional modes in solar photospheric magnetic flux tubes. A &A 395, 669–675 (2002). https://doi.org/10.1051/0004-6361:20021292

T. Magara, Dynamics of emerging flux tubes in the sun. ApJ 549(1), 608–628 (2001). https://doi.org/10.1086/319073

N. Magyar, D. Utz, R. Erdélyi, V.M. Nakariakov, Could switchbacks originate in the lower solar atmosphere? I. Formation mechanisms of switchbacks. ApJ 911(2), 75 (2021). https://doi.org/10.3847/1538-4357/abec49. arXiv:2103.03726 [astro-ph.SR]

N. Magyar, D. Utz, R. Erdélyi, V.M. Nakariakov, Could switchbacks originate in the lower solar atmosphere? II. Propagation of switchbacks in the solar corona. ApJ 914(1), 8 (2021). https://doi.org/10.3847/1538-4357/abfa98. arXiv:2104.10126 [astro-ph.SR]

J. Martínez-Sykora, B. De Pontieu, V. Hansteen, Two-dimensional radiative magnetohydrodynamic simulations of the importance of partial ionization in the chromosphere. ApJ. 753(2), 161 (2012) arXiv:1204.5991 [astro-ph.SR]. https://doi.org/10.1088/0004-637X/753/2/161

J. Martínez-Sykora, V.H. Hansteen, B. Gudiksen, M. Carlsson, B. De Pontieu, M. Gošić, On the origin of the magnetic energy in the quiet solar chromosphere. ApJ 878(1), 40 (2019). https://doi.org/10.3847/1538-4357/ab1f0b. arXiv:1904.04464 [astro-ph.SR]

M. Mathioudakis, D.B. Jess, R. Erdélyi, Alfvén waves in the solar atmosphere. From theory to observations. Space Sci. Rev. 175, 1–27 (2013). https://doi.org/10.1007/s11214-012-9944-7. arXiv:1210.3625 [astro-ph.SR]

S.A. Matthews, M. Collados, M. Mathioudakis, R. Erdelyi, The European Solar Telescope (EST). In: Evans, C.J., Simard, L., Takami, H. (eds.) Proc. SPIE 9908. Ground-based and Airborne Instrumentation for Astronomy VI (International Society for Optics and Photonics), vol. 9908, pp. 47–55 (2016). https://doi.org/10.1117/12.2234145

M.G. Moreels, T. Van Doorsselaere, Phase relations for seismology of photospheric flux tubes. A &A 551, 137 (2013). https://doi.org/10.1051/0004-6361/201219568

M.G. Moreels, M. Goossens, T. Van Doorsselaere, Cross-sectional area and intensity variations of sausage modes. A &A 555, 75 (2013). https://doi.org/10.1051/0004-6361/201321545

M.G. Moreels, N. Freij, R. Erdélyi, T. Van Doorsselaere, G. Verth, Observations and mode identification of sausage waves in a magnetic pore. A &A 579, 73 (2015). https://doi.org/10.1051/0004-6361/201425096

F. Moreno-Insertis, J. Martinez-Sykora, V.H. Hansteen, D. Muñoz, Small-scale magnetic flux emergence in the quiet sun. ApJ 859(2), 26 (2018). https://doi.org/10.3847/2041-8213/aac648. arXiv:1806.00489 [astro-ph.SR]

R.J. Morton, M.S. Ruderman, R. Erdélyi, Torsional Alfvén waves: magneto-seismology in static and dynamic coronal plasmas. A &A 534, 27 (2011). https://doi.org/10.1051/0004-6361/201117020

R.J. Morton, R. Erdélyi, D.B. Jess, M. Mathioudakis, Observations of sausage modes in magnetic pores. ApJ 729(2), 18 (2011). https://doi.org/10.1088/2041-8205/729/2/L18. arXiv:1011.2375 [astro-ph.SR]

R.J. Morton, G. Verth, J.A. McLaughlin, R. Erdélyi, Determination of sub-resolution structure of a jet by solar magnetoseismology. ApJ 744(1), 5 (2012). https://doi.org/10.1088/0004-637X/744/1/5. arXiv:1109.4851 [astro-ph.SR]

R. Muller, The dynamical behavior of facular points in the quiet photosphere. Sol. Phys. 85, 113–121 (1983). https://doi.org/10.1007/BF00148262

R. Muller, S.L. Keil, The characteristic size and brightness of facular points in the quiet photosphere. Sol. Phys. 87, 243–250 (1983)

R. Muller, T. Roudier, Formation of network bright points by granule compression. Sol. Phys. 141, 27–33 (1992)

R. Muller, J.C. Hulot, T. Roudier, Perturbation of the granular pattern by the presence of magnetic flux tubes. Sol. Phys. 119, 229–243 (1989). https://doi.org/10.1007/BF00146177

R. Muller, H. Auffret, T. Roudier, J. Vigneau, G.W. Simon, Z. Frank, R.A. Shine, A.M. Title, Evolution and advection of solar mesogranulation. Nature 356(6367), 322–325 (1992). https://doi.org/10.1038/356322a0

K. Murawski, P. Kayshap, A.K. Srivastava, D.J. Pascoe, P. Jelínek, B. Kuźma, V. Fedun, Magnetic swirls and associated fast magnetoacoustic kink waves in a solar chromospheric flux tube. MNRAS 474(1), 77–87 (2018). https://doi.org/10.1093/mnras/stx2763. arXiv:1710.08179 [astro-ph.SR]

S. Nagata, S. Tsuneta, Y. Suematsu, K. Ichimoto, Y. Katsukawa, T. Shimizu, T. Yokoyama, T.D. Tarbell, B.W. Lites, R.A. Shine, T.E. Berger, A.M. Title, L.R. Bellot-Rubio, D. Orozco-Suárez, Formation of solar magnetic flux tubes with kilogauss field strength induced by convective instability. ApJ 677, 145–147 (2008). https://doi.org/10.1086/588026

V.M. Nakariakov, D. Banerjee, B. Li, T. Wang, I.V. Zimovets, M. Falanga, Editorial to the topical collection: oscillatory processes in solar and stellar coronae. Space Sci. Rev. 218(3), 13 (2022). https://doi.org/10.1007/s11214-022-00888-1

C.J. Nelson, N. Freij, S. Bennett, R. Erdélyi, M. Mathioudakis, Spatially resolved signatures of bidirectional flows observed in inverted-Y shaped jets. ApJ 883(2), 115 (2019). https://doi.org/10.3847/1538-4357/ab3a54. arXiv:1908.05132 [astro-ph.SR]

P. Nisenson, A.A. van Ballegooijen, A.G. de Wijn, P. Sütterlin, Motions of isolated G-band bright points in the solar photosphere. ApJ 587, 458–463 (2003). https://doi.org/10.1086/368067. arXiv:astro-ph/0212306

D. Nóbrega-Siverio, F. Moreno-Insertis, J. Martínez-Sykora, The cool surge following flux emergence in a radiation-MHD experiment. ApJ 822(1), 18 (2016). https://doi.org/10.3847/0004-637X/822/1/18. arXiv:1601.04074 [astro-ph.SR]

L.J. November, G.W. Simon, Precise proper-motion measurement of solar granulation. ApJ 333, 427 (1988). https://doi.org/10.1086/166758

A. Ortiz, L.R.B. Rubio, V.H. Hansteen, J. de la Cruz Rodríguez, L.R. van der Voort, Emergence of granular-sized magnetic bubbles through the solar atmosphere. I. Spectropolarimetric observations and simulations. ApJ 781(2), 126 (2014). https://doi.org/10.1088/0004-637X/781/2/126

A. Ortiz, V.H. Hansteen, D. Nóbrega-Siverio, Ellerman bombs and UV bursts: reconnection at different atmospheric layers. A &A 633(58) (2020). https://doi.org/10.1051/0004-6361/201936574. arXiv:1910.10736 [astro-ph.SR]

J. Palacios, J. Blanco Rodríguez, S. Vargas Domínguez, V. Domingo, V. Martínez Pillet, J.A. Bonet, L.R. Bellot Rubio, J.C. Del Toro Iniesta, S.K. Solanki, P. Barthol, A. Gandorfer, T. Berkefeld, W. Schmidt, M. Knölker, Magnetic field emergence in mesogranular-sized exploding granules observed with sunrise/IMaX data. A &A 537, 21 (2012). https://doi.org/10.1051/0004-6361/201117936. arXiv:1110.4555 [astro-ph.SR]

A. Pardi, I. Ballai, A. Marcu, B. Orza, Sausage mode propagation in a thick magnetic flux tube. Sol. Phys. 289(4), 1203–1214 (2014). https://doi.org/10.1007/s11207-013-0380-y. arXiv:1310.5871

E. Pariat, S.K. Antiochos, C.R. DeVore, Three-dimensional modeling of Quasi-homologous solar jets. ApJ 714(2), 1762–1778 (2010). https://doi.org/10.1088/0004-637X/714/2/1762

E.N. Parker, Hydraulic concentration of magnetic fields in the solar photosphere. VI—adiabatic cooling and concentration in downdrafts. ApJ 221, 368–377 (1978). https://doi.org/10.1086/156035

C.E. Parnell, C.E. DeForest, H.J. Hagenaar, B.A. Johnston, D.A. Lamb, B.T. Welsch, A power-law distribution of solar magnetic fields over more than five decades in flux. ApJ 698(1), 75–82 (2009). https://doi.org/10.1088/0004-637X/698/1/75

W.D. Pesnell, B.J. Thompson, P.C. Chamberlin, The Solar Dynamics Observatory (SDO). Sol. Phys. 275(1–2), 3–15 (2012). https://doi.org/10.1007/s11207-011-9841-3

M.P. Rast, The scales of granulation, mesogranulation, and supergranulation. ApJ 597(2), 1200–1210 (2003). https://doi.org/10.1086/381221

M.P. Rast, N. B. González, L. B. Rubio, W. Cao, G. Cauzzi, E. Deluca, B. de Pontieu, L. Fletcher, S.E. Gibson, P.G. Judge, Y. Katsukawa, M.D. Kazachenko, E. Khomenko, E. Landi, V. M. Pillet, G.J.D. Petrie, J. Qiu, L.A. Rachmeler, M. Rempel, W. Schmidt, E. Scullion, X. Sun, B.T. Welsch, V. Andretta, P. Antolin, T.R. Ayres, K.S. Balasubramaniam, I. Ballai, T.E. Berger, S.J. Bradshaw, R.J. Campbell, M. Carlsson, R. Casini, R. Centeno, S.R. Cranmer, S. Criscuoli, C. Deforest, Y. Deng, R. Erdélyi, V. Fedun, C.E. Fischer, S.J. González Manrique, M. Hahn, L. Harra, V.M.J. Henriques, N.E. Hurlburt, S. Jaeggli, S. Jafarzadeh, R. Jain, S.M. Jefferies, P.H. Keys, A.F. Kowalski, C. Kuckein, J.R. Kuhn, D. Kuridze, J. Liu, W. Liu, D. Longcope, M. Mathioudakis, R.T.J. McAteer, S.W. McIntosh, D.E. McKenzie, M.P. Miralles, R.J. Morton, K. Muglach, C.J. Nelson, N.K. Panesar, S. Parenti, C.E. Parnell, B. Poduval, K.P. Reardon, J.W. Reep, T.A. Schad, D. Schmit, R. Sharma, H. Socas-Navarro, A.K. Srivastava, A.C. Sterling, Y. Suematsu, L.A. Tarr, S. Tiwari, A. Tritschler, G. Verth, A. Vourlidas, H. Wang, Y.-M.Wang, NSO and DKIST Project, DKIST Instrument cientists, KIST Science Working Group, DKIST Critical Science Plan Community: Critical Science Plan for the Daniel K. Inouye Solar Telescope (DKIST). Sol. Phys. 296(4), 70 (2021). https://doi.org/10.1007/s11207-021-01789-2. arXiv:2008.08203 [astro-ph.SR]

A. Reid, M. Mathioudakis, J.G. Doyle, E. Scullion, C.J. Nelson, V. Henriques, T. Ray, Magnetic flux cancellation in Ellerman bombs. ApJ 823(2), 110 (2016). https://doi.org/10.3847/0004-637X/823/2/110. arXiv:1603.07100 [astro-ph.SR]

I.S. Requerey, J.C. Del Toro Iniesta, L.R.B. Rubio, J.A. Bonet, V.M. Pillet, S.K. Solanki, W. Schmidt, The history of a quiet-sun magnetic element revealed by IMaX/SUNRISE. ApJ. 789(1), 6 (2014). https://doi.org/10.1088/0004-637X/789/1/6. arXiv:1405.2837 [astro-ph.SR]

J.M. Riedl, C.A. Gilchrist-Millar, T. Van Doorsselaere, D.B. Jess, S.D.T. Grant, Finding the mechanism of wave energy flux damping in solar pores using numerical simulations. A &A 648, 77 (2021). https://doi.org/10.1051/0004-6361/202040163. arXiv:2102.12420 [astro-ph.SR]

T.L. Riethmüller, S.K. Solanki, S.V. Berdyugina, M. Schüssler, V.M. Pillet, A. Feller, A. Gandorfer, J. Hirzberger, Comparison of solar photospheric bright points between sunrise observations and MHD simulations. A &A 568, 13 (2014). https://doi.org/10.1051/0004-6361/201423892. arXiv:1406.1387 [astro-ph.SR]

J.I.C. Rozo, D. Utz, S.V. Domínguez, A. Veronig, T. Van Doorsselaere, Photospheric plasma and magnetic field dynamics during the formation of solar AR 11190. A &A 622, 168 (2019). https://doi.org/10.1051/0004-6361/201832760. arXiv:1901.02437 [astro-ph.SR]

L.R.B. Rubio, C. Beck, Magnetic flux cancellation in the moat of sunspots: results from simultaneous vector spectropolarimetry in the visible and the infrared. ApJ 626, 125–128 (2005). https://doi.org/10.1086/431648

L.R.B. Rubio, D.O. Suárez, Pervasive linear polarization signals in the quiet sun. Astrophys. J. 757(1), 19 (2012). https://doi.org/10.1088/0004-637x/757/1/19

L.B. Rubio, D.O. Suárez, Quiet Sun magnetic fields: an observational view. Living Rev. Solar Phys. 16(1), 1 (2019). https://doi.org/10.1007/s41116-018-0017-1

L.R.B. Rubio, I.R. Hidalgo, M. Collados, E. Khomenko, B.R. Cobo, Observation of convective collapse and upward-moving shocks in the quiet sun. ApJ 560, 1010–1019 (2001). https://doi.org/10.1086/323063

M. Ryutova, Moving magnetic features (MMFs), pp. 287–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96361-7_11

G.B. Saavedra, D. Utz, S.V. Domínguez, J.I.C. Rozo, S.J.G. Manrique, P. Gömöry, C. Kuckein, H. Balthasar, P. Zelina, Observational evidence for two-component distributions describing solar magnetic bright points. A &A 657, 79 (2022). https://doi.org/10.1051/0004-6361/202141231. arXiv:2110.12404 [astro-ph.SR]

T. Samanta, H. Tian, V. Yurchyshyn, H. Peter, W. Cao, A. Sterling, R. Erdélyi, K. Ahn, S. Feng, D. Utz, D. Banerjee, Y. Chen, Generation of solar spicules and subsequent atmospheric heating. Science 366(6467), 890–894 (2019). https://doi.org/10.1126/science.aaw2796. arXiv:2006.02571 [astro-ph.SR]

J. Scalisi, M.S. Ruderman, R. Erdélyi, Reflection and evolution of torsional Alfvén pulses in zero-beta flux tubes. ApJ 922(2), 118 (2021). https://doi.org/10.3847/1538-4357/ac2509

R. Schlichenmaier, L.R.B. Rubio, M. Collados, R. Erdelyi, A. Feller, L. Fletcher, J. Jurcak, E. homenko, J. Leenaarts, S. Matthews, L. Belluzzi, M. Carlsson, K. Dalmasse, S. Danilovic, P. Gömöry, C. Kuckein, R.M. Sainz, M.M. Gonzalez, M. Mathioudakis, A. Ortiz, T.L. Riethmüller, L.R. van der Voort, P.J.A. Simoes, J.T. Bueno, D. Utz, F. Zuccarello, Science Requirement Document (SRD) for the European Solar Telescope (EST) (2nd edition, December 2019). arXiv e-prints, 1912–08650 (2019) arXiv:1912.08650 [astro-ph.SR]

M. Schüssler, A. Vögler, Magnetoconvection in a sunspot umbra. ApJ 641(1), 73–76 (2006). https://doi.org/10.1086/503772. arXiv:astro-ph/0603078 [astro-ph]

M. Schüssler, S. Shelyag, S. Berdyugina, A. Vögler, S.K. Solanki, Why solar magnetic flux concentrations are bright in molecular bands. ApJ 597, 173–176 (2003). https://doi.org/10.1086/379869

S. Shelyag, V. Fedun, F.P. Keenan, R. Erdélyi, M. Mathioudakis, Photospheric magnetic vortex structures. Annales Geophysicae 29(5), 883–887 (2011). https://doi.org/10.5194/angeo-29-883-2011

S. Shelyag, P. Keys, M. Mathioudakis, F.P. Keenan, Vorticity in the solar photosphere. A &A 526, 5 (2011). https://doi.org/10.1051/0004-6361/201015645. arXiv:1010.5604 [astro-ph.SR]

S. Shelyag, P.S. Cally, A. Reid, M. Mathioudakis, Alfvén waves in simulations of solar photospheric vortices. ApJ 776(1), 4 (2013). https://doi.org/10.1088/2041-8205/776/1/L4. arXiv:1309.2019 [astro-ph.SR]

S. Shelyag, E. Khomenko, A. de Vicente, D. Przybylski, Heating of the partially ionized solar chromosphere by waves in magnetic structures. ApJ 819(1), 11 (2016). https://doi.org/10.3847/2041-8205/819/1/L11. arXiv:1602.03373 [astro-ph.SR]

S.S.A. Silva, G. Verth, E.L. Rempel, S. Shelyag, L.A.C.A. Schiavo, V. Fedun, Solar vortex tubes. II. On the origin of magnetic vortices. ApJ 915(1), 24 (2021). https://doi.org/10.3847/1538-4357/abfec2

S. Skirvin, G. Verth, J.J. González-Avilés, S. Shelyag, R. Sharma, F.S. Guzmán, I. Ballai, E. Scullion, S.S.A. Silva, V. Fedun, Small-scale solar jet formation and their associated waves and instabilities. Adv. Space Res. (2022). https://doi.org/10.1016/j.asr.2022.05.033

B. Snow, G.J.J. Botha, J.A. McLaughlin, A. Hillier, Onset of 2D magnetic reconnection in the solar photosphere, chromosphere, and corona. A &A 609, 100 (2018). https://doi.org/10.1051/0004-6361/201731214. arXiv:1711.00683 [astro-ph.SR]

M. Sobotka, J.A. Bonet, M. Vazquez, A high-resolution study of inhomogeneities in sunspot umbrae. ApJ 415, 832 (1993). https://doi.org/10.1086/173205

M. Sobotka, P.N. Brandt, G.W. Simon, Fine structure in sunspots. I. Sizes and lifetimes of umbral dots. A &A 328, 682–688 (1997)

M. Sobotka, M. Vázquez, J.A. Bonet, A. Hanslmeier, J. Hirzberger, Temporal evolution of fine structures in and around solar pores. ApJ 511(1), 436–450 (1999). https://doi.org/10.1086/306671

M. Sobotka, M. Švanda, J. Jurčák, P. Heinzel, D. Del Moro, F. Berrilli, Dynamics of the solar atmosphere above a pore with a light bridge. A &A 560, 84 (2013). https://doi.org/10.1051/0004-6361/201322148. arXiv:1309.7790 [astro-ph.SR]

S.K. Solanki, D. Zufferey, H. Lin, I. Rueedi, J.R. Kuhn, Infrared lines as probes of solar magnetic features. XII. Magnetic flux tubes: evidence of convective collapse? A &A 310, 33–36 (1996)

S.K. Solanki, B. Inhester, M. Schüssler, The solar magnetic field. Rep. Progress Phys. 69(3), 563–668 (2006). https://doi.org/10.1088/0034-4885/69/3/R02. arXiv:1008.0771 [astro-ph.SR]

R. Soler, J. Terradas, R. Oliver, J.L. Ballester, Resonances in a coronal loop driven by torsional Alfvén waves propagating from the photosphere. ApJ 909(2), 190 (2021). https://doi.org/10.3847/1538-4357/abdec5

A.A. Solov’ev, L.D. Parfinenko, V.I. Efremov, E.A. Kirichek, O.A. Korolkova, Structure of photosphere under high resolution: granules, faculae, micropores, intergranular lanes. Ap &SS 364(12), 222 (2019). https://doi.org/10.1007/s10509-019-3710-1

H.C. Spruit, Convective collapse of flux tubes. Sol. Phys. 61, 363–378 (1979). https://doi.org/10.1007/BF00150420

M. Stangalini, F. Giannattasio, R. Erdélyi, S. Jafarzadeh, G. Consolini, S. Criscuoli, I. Ermolli, S.L. Guglielmino, F. Zuccarello, Polarized kink waves in magnetic elements: evidence for chromospheric helical waves. ApJ 840(1), 19 (2017). https://doi.org/10.3847/1538-4357/aa6c5e. arXiv:1704.02155 [astro-ph.SR]

M. Stangalini, D.B. Jess, G. Verth, V. Fedun, B. Fleck, S. Jafarzadeh, P.H. Keys, M. Murabito, D. Calchetti, A.A. Aldhafeeri, F. Berrilli, D. Del Moro, S.M. Jefferies, J. Terradas, R. Soler, A novel approach to identify resonant MHD wave modes in solar pores and sunspot umbrae: B $${-}$$$${\omega }$$ analysis. A &A 649, 169 (2021). https://doi.org/10.1051/0004-6361/202140429. arXiv:2103.11639 [astro-ph.SR]

M. Stangalini, R. Erdélyi, C. Boocock, D. Tsiklauri, C.J. Nelson, D. Del Moro, F. Berrilli, M.B. Korsós, Torsional oscillations within a magnetic pore in the solar photosphere. Nat. Astron. 5, 691–696 (2021). https://doi.org/10.1038/s41550-021-01354-8

A.A. Stanislavsky, K. Weron, Subdiffusive transport in intergranular lanes on the Sun. The Leighton model revisited. Ap &SS 312, 343–347 (2007). https://doi.org/10.1007/s10509-007-9702-6

R.F. Stein, A. Lagerfjärd, Å. Nordlund, D. Georgobiani, Solar flux emergence simulations. Sol. Phys. 268(2), 271–282 (2011). https://doi.org/10.1007/s11207-010-9510-y

O. Steiner, P.H. Hauschildt, J. Bruls, Radiative properties of magnetic elements. I. Why are vec G-band bright points bright? A &A 372, 13–16 (2001). https://doi.org/10.1051/0004-6361:20010540

M. Terra-Homem, R. Erdélyi, I. Ballai, Linear and non-linear MHD wave propagation in steady-state magnetic cylinders. Sol. Phys. 217(2), 199–223 (2003). https://doi.org/10.1023/B:SOLA.0000006901.22169.59

I. Thaler, H.C. Spruit, Brightness of the sun’s small scale magnetic field: proximity effects. A &A 566, 11 (2014). https://doi.org/10.1051/0004-6361/201322126. arXiv:1404.2871 [astro-ph.SR]

I. Thaler, H.C. Spruit, Small-scale dynamos on the solar surface: dependence on magnetic Prandtl number. A &A 578, 54 (2015). https://doi.org/10.1051/0004-6361/201423738. arXiv:1505.04575 [astro-ph.SR]

H. Tian, S.W. McIntosh, T. Wang, L. Ofman, B. De Pontieu, D.E. Innes, H. Peter, Persistent Doppler shift oscillations observed with Hinode/EIS in the solar corona: spectroscopic signatures of Alfvénic waves and recurring upflows. ApJ 759(2), 144 (2012). https://doi.org/10.1088/0004-637X/759/2/144. arXiv:1209.5286 [astro-ph.SR]

A.M. Title, T.D. Tarbell, K.P. Topka, S.H. Ferguson, R.A. Shine, SOUP Team, Statistical properties of solar granulation derived from the SOUP instrument on Spacelab 2. ApJ 336, 475–494 (1989). https://doi.org/10.1086/167026

D. Utz, A. Hanslmeier, C. Möstl, R. Muller, A. Veronig, H. Muthsam, The size distribution of magnetic bright points derived from Hinode/SOT observations. A &A 498, 289–293 (2009). https://doi.org/10.1051/0004-6361/200810867

D. Utz, A. Hanslmeier, R. Muller, A. Veronig, J. Rybák, H. Muthsam, Dynamics of isolated magnetic bright points derived from Hinode/SOT G-band observations. A &A 511, 39 (2010). https://doi.org/10.1051/0004-6361/200913085. arXiv:0912.1965 [astro-ph.SR]

D. Utz, A. Hanslmeier, A. Veronig, O. Kühner, R. Muller, J. Jurčák, B. Lemmerer, Variations of magnetic bright point properties with longitude and latitude as observed by Hinode/SOT G-band data. Sol. Phys. 284(2), 363–378 (2013). https://doi.org/10.1007/s11207-012-0210-7. arXiv:1212.1310 [astro-ph.SR]

D. Utz, J. Jurčák, A. Hanslmeier, R. Muller, A. Veronig, O. Kühner, Magnetic field strength distribution of magnetic bright points inferred from filtergrams and spectro-polarimetric data. A &A 554, 65 (2013). https://doi.org/10.1051/0004-6361/201116894

D. Utz, J.C. del Toro Iniesta, L.R.B. Rubio, J. Jurčák, V.M. Pillet, S.K. Solanki, The formation and disintegration of magnetic bright points observed by sunrise/IMaX. ApJ 796, 79 (2014). https://doi.org/10.1088/0004-637X/796/2/79. arXiv:1411.3240 [astro-ph.SR]

D. Utz, R. Muller, S. Thonhofer, A. Veronig, A. Hanslmeier, M. Bodnárová, M. Bárta, J.C. del Toro Iniesta, Long-term trends of magnetic bright points. I. Number of magnetic bright points at disc centre. A &A 585, 39 (2016). https://doi.org/10.1051/0004-6361/201525926. arXiv:1511.07767 [astro-ph.SR]

L.R. van der Voort, B. De Pontieu, G.B. Scharmer, J. de la Cruz Rodríguez, J. Martínez-Sykora, D. Nóbrega-Siverio, L.J. Guo, S. Jafarzadeh, T.M.D. Pereira, V.H. Hansteen, M. Carlsson, G. Vissers, Intermittent reconnection and plasmoids in UV bursts in the low solar atmosphere. ApJ 851(1), 6 (2017). https://doi.org/10.3847/2041-8213/aa99dd. arXiv:1711.04581 [astro-ph.SR]

T. Van Doorsselaere, B. Li, M. Goossens, B. Hnat, N. Magyar, Wave pressure and energy cascade rate of kink waves computed with Elsässer variables. ApJ 899(2), 100 (2020). https://doi.org/10.3847/1538-4357/aba0b8. arXiv:2007.15411 [astro-ph.SR]

G. Vigeesh, S.S. Hasan, O. Steiner, Wave propagation and energy transport in the magnetic network of the Sun. A &A 508, 951–962 (2009). https://doi.org/10.1051/0004-6361/200912450. arXiv:0909.2325 [astro-ph.SR]

B. Viticchié, D. Del Moro, S. Criscuoli, F. Berrilli, Imaging spectropolarimetry with IBIS. II. On the fine structure of G-band bright features. ApJ 723, 787–796 (2010). https://doi.org/10.1088/0004-637X/723/1/787. arXiv:1009.0721 [astro-ph.SR]

A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet, T. Linde, Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code. A &A 429, 335–351 (2005). https://doi.org/10.1051/0004-6361:20041507

H. Wang, H. Zirin, Flows around sunspots and pores. Sol. Phys. 140(1), 41–54 (1992). https://doi.org/10.1007/BF00148428

S. Wedemeyer-Böhm, E. Scullion, O. Steiner, L.R. van der Voort, J. de La Cruz Rodriguez, V. Fedun, R. Erdélyi, Magnetic tornadoes as energy channels into the solar corona. Nature 486, 505–508 (2012). https://doi.org/10.1038/nature11202

E. Wiehr, B. Bovelet, J. Hirzberger, Brightness and size of small-scale solar magnetic flux concentrations. A &A 422, 63–66 (2004). https://doi.org/10.1051/0004-6361:200400019

A. Wiśniewska, Z.E. Musielak, J. Staiger, M. Roth, Observational evidence for variations of the acoustic cutoff frequency with height in the solar atmosphere. ApJ 819(2), 23 (2016). https://doi.org/10.3847/2041-8205/819/2/L23

J. Xiong, Y. Yang, C. Jin, K. Ji, S. Feng, F. Wang, H. Deng, Y. Hu, The characteristics of thin magnetic flux tubes in the lower solar atmosphere observed by Hinode/SOT in the G band and in Ca II H bright points. ApJ 851(1), 42 (2017). https://doi.org/10.3847/1538-4357/aa9a44

L. Xu, Y. Yang, Y. Yan, Y. Zhang, X. Bai, B. Liang, W. Dai, S. Feng, W. Cao, Research on multiwavelength isolated bright points based on deep learning. ApJ 911(1), 32 (2021). https://doi.org/10.3847/1538-4357/abe705

Z. Xu, H. Ji, J. Hong, K. Ji, J. Yang, Magnetic field evolution around a fast-moving pore emerging from the quiet Sun. A &A 660, 55 (2022). https://doi.org/10.1051/0004-6361/202143021

Z. Xue, X. Yan, L. Yang, J. Chen, J. Wang, Q. Li, L. Zhao, Decay of solar pores driven by small-scale magnetic reconnection episodes. ApJ 919(2), 29 (2021). https://doi.org/10.3847/2041-8213/ac2733

L. Yang, J. He, H. Peter, C. Tu, L. Zhang, X. Feng, S. Zhang, Numerical simulations of chromospheric anemone jets associated with moving magnetic features. ApJ 777(1), 16 (2013). https://doi.org/10.1088/0004-637X/777/1/16

Y.-F. Yang, J.-B. Lin, S. Feng, K.-F. Ji, H. Deng, F. Wang, Evolution of isolated G-band bright points: size, intensity and velocity. Res. Astron. Astrophys. 14, 741–752 (2014). https://doi.org/10.1088/1674-4527/14/6/012

V. Zakharov, A. Gandorfer, S.K. Solanki, M. Löfdahl, A comparative study of the contrast of solar magnetic elements in CN and CH. A &A 437, 43–46 (2005). https://doi.org/10.1051/0004-6361:200500135

X. Zhao, F. Bacchini, R. Keppens, Magnetic island merging: two-dimensional MHD simulation and test-particle modeling. Phys. Plasmas 28(9), 092113 (2021). https://doi.org/10.1063/5.0058326. arXiv:2108.13508 [astro-ph.SR]

X. Zhou, J. Büchner, M. Bárta, W. Gan, S. Liu, Electron acceleration by cascading reconnection in the solar corona. II. Resistive electric field effects. ApJ 827(2), 94 (2016). https://doi.org/10.3847/0004-637X/827/2/94

C. Zwaan, Elements and patterns in the solar magnetic field. ARA &A 25, 83–111 (1987). https://doi.org/10.1146/annurev.aa.25.090187.000503

C. Zwaan, J.J. Brants, L.E. Cram, High resolution spectroscopy of active regions—part one—observing procedures. Sol. Phys. 95(1), 3–14 (1985). https://doi.org/10.1007/BF00162632