Interaction of Water with Atomic Layer Deposited Titanium Dioxide on p‐Si Photocathode: Modeling of Photoelectrochemical Interfaces in Ultrahigh Vacuum with Cryo‐Photoelectron Spectroscopy

Advanced Materials Interfaces - Tập 8 Số 11 - 2021
Thorsten Cottre1, Mathias Fingerle1, Melanie Kranz1, Thomas Mayer1, Bernhard Kaiser1, Wolfram Jaegermann1
1Surface Science Group Materials Science Department Technical University of Darmstadt Otto‐Berndt‐Str. 3 64287 Darmstadt Germany

Tóm tắt

AbstractThis study combines cryo‐photoelectron spectroscopy and electrochemical analysis techniques to investigate the p‐Si/SiO2/TiO2/H2O system in the context of water‐splitting. Atomic layer deposition is used for the preparation of a TiO2 thin film coating for a p‐Si/SiO2 photocathode. First, an interface experiment is performed to study the contact properties of the interface between p‐Si/SiO2 and TiO2. For the p‐Si/TiO2 heterojunction, a downward band bending of 0.3 eV is found for the p‐Si toward the interface. Second, a water adsorption experiment is conducted, which allows the investigation of the surface chemistry of the TiO2 coating in contact to water. A direct correlation between the amount of surface hydroxide species, formed due to water dissociation, and Ti3+ defect state density is found. Furthermore, a surface water species can be identified in addition to the commonly found bulk molecular water. Together with the results from a Mott–Schottky analysis, a complete energy level alignment can be constructed.

Từ khóa


Tài liệu tham khảo

10.1016/j.elspec.2017.04.004

10.1016/0038-1101(78)90308-8

10.1143/JJAP.25.1288

10.1116/1.1314395

10.1021/cr0500535

10.1016/S1389-5567(00)00002-2

10.1021/jp9088047

10.1039/C4EE00450G

10.1039/C3CS60370A

10.1016/j.tsf.2004.08.033

10.1016/j.spmi.2014.10.029

10.1016/0040-6090(89)90627-5

10.1016/0040-6090(83)90136-0

10.1116/1.572220

10.1063/1.1940727

10.1021/cr900056b

10.1039/C6CS00918B

10.1515/zpch-2019-1483

Ronge E., 2019, Z. Phys. Chem., 234, 1171, 10.1515/zpch-2019-1481

10.1002/(SICI)1521-4095(199801)10:2<135::AID-ADMA135>3.0.CO;2-M

10.1021/cr050172k

10.1021/acs.iecr.9b00147

10.1021/jp056375u

10.1149/2.0191804jes

10.1149/1945-7111/abbcdf

10.1021/jp068606i

10.1002/cvde.200306266

Thomas A. G., 2007, Phys. Rev. B, 75

10.1016/0022-0248(94)00874-4

10.1016/S0022-0248(00)00897-6

10.1088/1361-6641/aa78ce

10.1021/j100121a040

10.1021/la00036a026

10.1016/S0167-5729(02)00100-0

10.1039/C5CP06230F

10.1016/j.apcata.2010.05.039

10.1088/0957-4484/19/44/445401

10.1039/C5EE00769K

10.1021/jp951142w

10.1016/j.apsusc.2015.04.172

10.1126/science.1200448

10.1016/j.jeurceramsoc.2007.07.014

10.1021/nl201766h

10.1016/j.cattod.2013.08.025

10.1016/0009-2614(79)87231-0

T.Mayer Dissertation Universität Berlin 1993.

10.1016/0039-6028(84)90054-2

10.1016/0039-6028(78)90328-X

10.1088/0953-8984/1/SB/022

10.1016/S0584-8539(87)80043-0

10.1016/0039-6028(89)90626-2

10.1016/S0039-6028(87)80155-3

10.1016/0042-207X(89)90010-9

10.1016/0038-1098(77)90376-3

10.1103/PhysRevB.26.6682

10.1016/0039-6028(91)91091-B

10.1116/1.577986

10.1016/0039-6028(94)90837-0

10.1016/0039-6028(95)00859-4

10.1016/0039-6028(95)01357-1

10.1126/science.1159846

10.1103/PhysRevLett.104.036806

10.1021/jp064689r

10.1021/acs.jpcc.5b01264

10.1021/acs.jpcc.5b02430

10.1002/aenm.201802195

10.1126/science.1251428

10.1016/0167-5729(87)90001-X

10.1021/la0009240

10.1063/1.356190

10.1021/acs.jpcc.5b09121

10.1038/srep15088

10.1016/j.apsusc.2020.147020

10.1039/9781847559876

10.1103/PhysRevB.5.4709

10.1002/sia.740110902