Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tương tác giữa Nhiệt độ và Ánh sáng trong Sự Phát triển của Khả Năng Chịu Đựng Đóng Băng ở Thực Vật
Tóm tắt
Khả năng chịu đựng đóng băng là kết quả của một loạt các quá trình vật lý và sinh hóa, như sự gia tăng sản xuất các protein chống đông, sự thay đổi thành phần màng, sự tích lũy các chất bảo vệ thẩm thấu, và sự thay đổi trạng thái redox, cho phép thực vật hoạt động ở nhiệt độ thấp. Ngay cả ở những loài chịu lạnh, một khoảng thời gian nhất định tăng trưởng ở nhiệt độ thấp nhưng không bị đóng băng, được gọi là quá trình cứng đông hoặc làm cứng lạnh, là cần thiết để phát triển một mức độ chịu đựng lạnh cao. Từ lâu người ta đã biết rằng quá trình cứng đông ở nhiệt độ thấp dưới cường độ ánh sáng thấp kém hiệu quả hơn nhiều so với trong điều kiện ánh sáng bình thường; còn có một số bằng chứng cho thấy cường độ ánh sáng cao ở nhiệt độ bình thường có thể một phần thay thế khoảng thời gian cứng đông. Những kết quả trước đó chỉ ra rằng sự thích nghi với lạnh phản ánh một phản ứng đối với tín hiệu redox của lạp thể trong khi các tác động của áp lực kích thích vượt ra ngoài sự thích nghi quang hợp, ảnh hưởng đến hình thái thực vật và sự biểu hiện của một số gen hạt nhân có liên quan đến thích nghi với lạnh. Những kết quả gần đây cho thấy rằng không chỉ các thông số liên quan chặt chẽ đến các quá trình chuyển tải điện tử quang hợp bị ảnh hưởng bởi ánh sáng trong quá trình làm cứng ở nhiệt độ thấp, mà ánh sáng còn có thể ảnh hưởng đến mức độ biểu hiện của một vài gen liên quan đến lạnh khác; một số quá trình thích nghi với lạnh có thể hoạt động hiệu quả chỉ khi có sự hiện diện của ánh sáng. Bài tổng quan hiện tại cung cấp cái nhìn tổng quan về các cơ chế có thể giải thích cách ánh sáng cải thiện khả năng chịu đựng đóng băng của thực vật trong giai đoạn làm cứng lạnh.
Từ khóa
#khả năng chịu đựng đóng băng #thực vật #cứng đông #ánh sáng #nhiệt độ #thích nghi với lạnh #protein chống đông #tín hiệu redoxTài liệu tham khảo
Ábrahám E, Rigó G, Székely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372
Apostol S, Szalai G, Sujbert L, Popova LP, Janda T (2006) Non-invasive monitoring of the light-induced cyclic photosynthetic electron flow during cold hardening in wheat leaves. Z Naturforsch C 61:734–740
Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190
Boneh U, Biton I, Schwartz A, Ben-Ari G (2012) Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Sci 187:89–96
Boonman A, Prinsen E, Gilmer F, Schurr U, Peeters AJM, Voesenek LACJ, Pons TL (2007) Cytokinin import rate as a signal for photosynthetic acclimation to canopy light gradients. Plant Physiol 143:1841–1852
Cansev A, Gulen H, Eris A (2009) Cold-hardiness of olive (Olea europaea L.) cultivars in cold-acclimated and non-acclimated stages: seasonal alteration of antioxidative enzymes and dehydrin-like proteins. J Agric Sci 147:51–61
Chandler JW (2009) Auxin as compère in plant hormone crosstalk. Planta 231:1–12
Chen WQ, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou GZ, Whitham SA, Budworth PR, Tao Y, Xie ZY, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dang JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574
Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev Cell 19:284–295
Crosatti C, Rizza F, Badeck FW, Mazzucotelli E, Cattivelli L (2013) Harden the chloroplast to protect the plant. Physiol Plant 147(1):55–63
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signalling network. Annu Rev Plant Biol 61:651–679
Degenkolbe T, Giavalisco P, Zuther E, Seiwert B, Hincha DK, Dirk K, Willmitzer L (2012) Differential remodeling of the lipidome during cold acclimation in natural accessions of Arabidopsis thaliana. Plant J 72:972–982
Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21:R365–R373
Ensminger I, Busch F, Huner NPA (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126:28–44
Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signalling in seeds and seedlings. Plant Cell 14:515–545
Franklin KA (2009) Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol 12:63–68
Franklin KA, Whitelam GC (2007) Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat Genet 39:1410–1413
Giri J (2011) Glycinebetaine and abiotic stress tolerance in plants. Plant Signal Behav 6(11):1746–1751
Gray GR, Chauvin LP, Sarhan F, Huner N (1997) Cold acclimation and freezing tolerance (a complex interaction of light and temperature). Plant Physiol 114:467–474
Gulick PJ, Drouin S, Yu Z, Danyluk J, Poisson G, Monroy AF, Sarhan F (2005) Transcriptome comparison of winter and spring wheat responding to low temperature. Genome 48:913–923
Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41:187–223
Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters, and regulatory factors. Plant Mol Biol 49:373–385
Hayashi H, Alia, Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12(1):133–142
Holmström KO, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51(343):177–185
Horváth E, Pál M, Szalai G, Páldi E, Janda T (2007a) Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat (Triticum aestivum L.) plants. Biol Plant 51:480–487
Horváth E, Szalai G, Janda T (2007b) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300
Howarth CJ, Ougham HJ (1993) Gene expression under temperature stress. New Phytol 125:1–26
Huner NPA, Williams JP, Maissan EE, Myscich EG, Krol M, Laroche A, Singh J (1989) Low temperature-induced decrease in trans-Δ3-hexadecenoic acid content is correlated with freezing tolerance in cereals. Plant Physiol 89:144–150
Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3(6):224–230
Hurry VM, Huner NP (1992) Effect of cold hardening on sensitivity of winter and spring wheat leaves to short-term photoinhibition and recovery of photosynthesis. Plant Physiol 100(3):1283–1290
Hurry VM, Strand A, Tobiaeson M, Gardeström P, Öquist G (1995) Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. Plant Physiol 109:697–706
Janda T, Kissimon J, Szigeti Z, Veisz O, Páldi E (1994) Characterization of cold hardening in wheat using fluorescence induction parameters. J Plant Physiol 143:385–388
Janda T, Szalai G, Rios-Gonzalez K, Veisz O, Páldi E (2003) Comparative study of frost tolerance and antioxidant activity in cereals. Plant Sci 164:301–306
Janda T, Szalai G, Leskó K, Yordanova R, Apostol S, Popova LP (2007) Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochemistry 68:1674–1682
Jeon J, Kim J (2013) Arabidopsis response regulator1 and Arabidopsis histidine phosphotransfer protein2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant Physiol 161:408–424
Jeon J, Kim NY, Kim S, Kang NY, Novák O, Ku SJ, Cho C, Lee DJ, Lee EJ, Strnad M, Kim J (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23369–23384
Kang HG, Singh KB (2000) Characterization of salicylic acid-responsive, Arabidopsis Dof domain proteins: overexpression of OBP3 leads to growth defects. Plant J 21:329–339
Keren N, Krieger-Liszkay A (2011) Photoinhibition: molecular mechanisms and physiological significance. Physiol Plant 142:1–5
Kim HJ, Kim YK, Park JY, Kim J (2002) Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J 29:693–704
Klíma M, Vítámvás P, Zelenková S, Vyvadilová M, Prášil IT (2012) Dehydrin and proline content in Brassica napus and B. carinata under cold stress at two irradiances. Biol Plant 56:157–161
Knight MR, Knight H (2012) Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 195:737–751
Kocsy G, Pál M, Soltész A, Szalai G, Boldizsár Á, Kovács V, Janda T (2011) Low temperature and oxidative stress in cereals. Acta Agron Hung 59:169–189
Kosová K, Holková L, Prášil IT, Prášilová P, Bradáčová M, Vítámvás P, Čapková V (2008) The expression of dehydrin5 during the development of frost tolerance in barley (Hordeum vulgare). J Plant Physiol 165:1142–1151
Kosová K, Prášil IT, Prášilová P, Vítámvás P, Chrpová J (2010) The development of frost tolerance and DHN5 protein accumulation in barley (Hordeum vulgare) doubled haploid lines derived from Atlas68 × Igri cross during cold acclimation. J Plant Physiol 167:343–350
Kosová K, Prasil IT, Vitamvas P, Dobrev P, Motyka V, Flokova K, Novak O, Turecková V, Rolcik J, Pesek B, Travnickova A, Gaudinova A, Galiba G, Janda T, Vlasakova E, Prasilova P, Vankova R (2012) Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J Plant Physiol 169:567–576
Kruse O, Hankamer B, Konczak C, Gerle C, Morris E, Radunz A, Schmid GH, Barber J (2000) Phosphatidylglycerol is involved in the dimerization of photosystem II. J Biol Chem 275:6509–6514
Lee CM, Thomashow MF (2012) Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc Natl Acad Sci USA 109:15054–15059
Levitt J (1972) Freezing resistance: types, measurements, and changes. In: Kozlowski TT (ed) Responses of plants to environmental stresses. Academic Press, New York, pp 75–109
Maibam P, Nawkar GM, Park JH, Sahi VP, Lee SY, Kang CH (2013) The influence of light quality, circadian rhythm, and photoperiod on the CBF-mediated freezing tolerance. Int J Mol Sci 14:11527–11543
Majláth I, Szalai G, Soós V, Sebestyén E, Balázs E, Vanková R, Dobrev PI, Tandori J, Janda T (2012) Effect of light on the gene expression and hormonal status of winter and spring wheat plants during cold hardening. Physiol Plant 145:296–314
McKown R, Kuroki G, Warren G (1996) Cold responses of Arabidopsis mutants impaired in freezing tolerance. J Exp Bot 47:1919–1925
Mira-Rodado V, Sweere U, Grefen C, Kunkel T, Fejes E, Nagy F, Schafer E, Harter K (2007) Functional cross-talk between two-component and phytochrome B signal transduction in Arabidopsis. J Exp Bot 58:2595–2607
Muday GK, Rahman A, Binder B (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195
Ndong C, Danyluk J, Huner NPA, Sarhan F (2001) Survey of gene expression in winter rye during changes in growth temperature, irradiance or excitation pressure. Plant Mol Biol 45:691–703
Ndong C, Danyluk J, Kenneth E, Wilson KE, Tessa Pocock T, Huner NPA, Sarhan F (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol 129:1368–1381
Noctor G (2006) Metabolic signalling in defence and stress: the central role of soluble redox couples. Plant Cell Environ 29:409–425
Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279
Ntatsi G, Savvas D, Druege U, Schwarz D (2013) Contribution of phytohormones in alleviating the impact of sub-optimal temperature stress on grafted tomato. Sci Hortic 149:28–38
Pagter M, Lefevre I, Arora R, Hausman JF (2011) Quantitative and qualitative changes in carbohydrates associated with spring deacclimation in contrasting Hydrangea species. Environ Exp Bot 72:358–367
Pál M, Leskó K, Janda T, Páldi E, Szalai G (2007) Cadmium-induced changes in the membrane lipid composition of maize plants. Cereal Res Commun 35:1631–1642
Patel D, Franklin KA (2009) Temperature-regulation of plant architecture. Plant Signal Behav 4:577–579
Rahman A (2013) Auxin: a regulator of cold stress response. Physiol Plant 147:28–35
Sasheva P, Szalai G, Janda T, Popova L (2010) Study of the behaviour of antioxidant enzymes in the response to hardening and freezing stress in two wheat (Triticum aestivum L.) varieties. C R Acad Bulg Sci 63:1733–1740
Sheen J, Zhou L, Jang JC (1999) Sugars as signaling molecules. Curr Opin Plant Biol 2:410–418
Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595
Shinozaki KY, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803
Soitamo AJ, Piippo M, Allahverdiyeva Y, Battchikova N, Aro EM (2008) Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol 8:13
Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037
Stephenson TJ, McIntyre CL, Collet C, Xue GP (2010) TaNF-YC11, one of the light-upregulated NF-YC members in Triticum aestivum, is co-regulated with photosynthesis-related genes. Funct Integr Genomics 10:265–276
Swarup R, Parry G, Graham N, Allen T, Bennett M (2002) Auxin cross-talk: integration of signalling pathways to control plant development. Plant Mol Biol 49:411–426
Szalai G, Janda T, Páldi E, Dubacq J-P (2001) Changes in the fatty acid unsaturation after hardening in wheat chromosome substitution lines with different cold tolerance. J Plant Physiol 158:663–666
Szalai G, Pap M, Janda T (2009a) Light-induced frost tolerance differs in winter and spring wheat plants. J Plant Physiol 166:1826–1831
Szalai G, Kellos T, Galiba G, Kocsy G (2009b) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28:66–80
Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599
Vítámvás P, Saalbach G, Prášil IT, Čapková V, Opatrná J, Jahoor A (2007) WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat. J Plant Physiol 164:1197–1207
Vítámvás P, Kosová K, Prášilová P, Prášil IT (2010) Accumulation of WCS120 protein in wheat cultivars grown at 9 °C or 17 °C in relation to their winter survival. Plant Breed 129:611–616
Wang JH, Li SC, Sun M, Huang W, Cao H, Xu F, Zhou NN, Zhang SB (2013) Differences in the stimulation of cyclic electron flow in two tropical ferns under water stress are related to leaf anatomy. Physiol Plant 147:283–295
Wanner LA, Junttila O (1999) Cold-induced freezing tolerance in Arabidopsis. Plant Physiol 120:391–400
Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8:749–771
Xiao W, Sheen J, Jang JC (2000) The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol Biol 44:451–461
Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(suppl):S165–S183
Yelenosky G (1979) Accumulation of free proline in citrus leaves during cold hardening of young trees in controlled temperature regimes. Plant Physiol 64:425–427
Yu XM, Griffith M, Wiseman SB (2001) Ethylene induces antifreeze activity in winter rye leaves. Plant Physiol 126:1232–1240
Zaltsman A, Ori N, Adam Z (2005) Two types of FtsH protease subunits are required for chloroplast biogenesis and photosystem II repair in Arabidopsis. Plant Cell 17:2782–2790
Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273