Tương tác giữa các hạt nano vàng và nickel với hydro phân tử và carbon monoxide trong điều kiện có mặt của trường điện

Colloid Journal - Tập 85 - Trang 16-24 - 2023
M. V. Grishin1, A. K. Gatin1, E. K. Golubev1,2, N. V. Dokhlikova1, S. A. Ozerin1, S. Yu. Sarvadii1, I. G. Stepanov1, V. G. Slutskii1, V. A. Kharitonov1, B. R. Shub1
1Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
2Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Một lớp coating nano cấu trúc vàng-nickel đã được tổng hợp trên bề mặt than chì nhiệt phân. Các thuộc tính vật lý – hóa học của nó đã được nghiên cứu bằng kính hiển vi quét tần số hầm và quang phổ, quang phổ Auger, khối phổ và các phương pháp khác. Đã phát hiện rằng lớp coating bao gồm các cụm hình thành từ các hạt nano vàng và nickel. Nghiên cứu đã chỉ ra rằng một trường điện có thể ức chế hoặc kích thích sự hấp thụ hydro trên vàng và sự khử bề mặt oxit của các hạt nano nickel bằng carbon monoxide. Cơ chế ảnh hưởng của trường điện đến các quá trình hóa học liên quan đến H2 và CO là khác nhau. Mô phỏng hóa học lượng tử đã cho phép xác định các giá trị của các hàng rào năng lượng cho sự hấp thụ CO trên các hạt nano nickel.

Từ khóa

#hạt nano #vàng #nickel #hydro #carbon monoxide #trường điện #hấp thụ #mô phỏng hóa học lượng tử

Tài liệu tham khảo

Roldan Cuenya, B., Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects, Thin Solid Films, 2010, vol. 518, no. 12, p. 3127. https://doi.org/10.1016/j.tsf.2010.01.018 Gerasimov, G.N., Ikim, M.I., Gromov, V.F., Ilegbusi, O.J., and Trakhtenberg, L.I., Chemical modification of impregnated SnO2-In2O3 nanocomposites due to interaction of sensor components, J. Alloys Compd., 2021, vol. 883, p. 160817. https://doi.org/10.1016/j.jallcom.2021.160817 Wang, X., Tang, F., Qi, X., Lin, Z., Battocchi, D., and Chen, X., Enhanced protective coatings based on nanoparticle fullerene C60 for oil & gas pipeline corrosion mitigation, Nanomaterials, 2019, vol. 9, no. 10, p. 1476. https://doi.org/10.3390/nano9101476 Chopani, S.M.H., Asadi, S., and Heravi, M.M., Application of bimetallic and trimetallic nanoparticles supported on graphene as novel heterogeneous catalysts in the reduction of nitroarenes, homo-coupling, suzuki-miyaura and sonogashira reactions, Current Organic Chemistry, 2020, vol. 24, no. 19, p. 2216. https://doi.org/10.2174/1385272824999200914111559 Keane, M.A., Gomez-Quero, S., Cardenas-Lizana, F., and Shen, W., Alumina-supported Ni-Au: Surface synergistic effects in catalytic hydrodechlorination, ChemCatChem, 2009, vol. 1, no. 2, p. 270. https://doi.org/10.1002/cctc.200900070 Yuan, G., Louis, C., Delannoy, L., and Keane, M.A., Silica- and titania-supported Ni–Au: Application in catalytic hydrodechlorination, J. Catal., 2007, vol. 247, no. 2, p. 256. “ https://doi.org/10.1016/j.jcat.2007.02.008 Wu, Z., Zhao, Z., and Zhang, M., Synthesis by replacement reaction and application of TiO2-supported Au–Ni bimetallic catalyst, ChemCatChem, 2010, vol. 2, no. 12, p. 1606. https://doi.org/10.1002/cctc.201000165 Cardenas-Lizana, F., Gomez-Quero, S., Jacobs, G., Ji, Y., Davis, B.H., Kiwi-Minsker, L., and Keane, M.A., Alumina supported Au–Ni: Surface synergism in the gas phase hydrogenation of nitro-compounds, J. Phys. Chem. C, 2012, vol. 116, no. 20, p. 11166. https://doi.org/10.1021/jp3025528 Cardenas-Lizana, F. and Keane, M.A., Gas phase selective hydrogenation over oxide supported Ni–Au, Phys. Chem. Chem. Phys., 2015, vol. 17, no. 42, p. 28088. https://doi.org/10.1039/c5cp00282f Wei, H., Wei, X., Yang, X., Yin, G., Wang, A., Liu, X., Huang, Y., and Zhang, T., Supported Au-Ni nano-alloy catalysts for the chemoselective hydrogenation of nitroarenes, Chin. J. Catal., 2015, vol. 36, no. 2, p. 160. https://doi.org/10.1016/S1872-2067(14)60254-0 Nikolaev, S.A. and Smirnov, V.V., Synergistic and size effects in selective hydrogenation of alkynes on gold nanocomposites, Catal. Today, 2009, vol. 147, p. S336. https://doi.org/10.1016/j.cattod.2009.07.032 Aguilar-Tapia, A., Delannoy, L., Louis, C., Han, C.W., Ortalan, V., and Zanella, R., Selective hydrogenation of 1,3-butadiene over bimetallic Au-Ni/TiO2 catalysts prepared by deposition-precipitation with urea, J. Catal., 2016, vol. 344, p. 515. https://doi.org/10.1016/j.jcat.2016.10.025 Chai, M., Liu, X., Li, L., Pei, G., Ren, Y., Su, Y., Cheng, H., Wang, A., and Zhang, T., SiO2-supported Au-Ni bimetallic catalyst for the selective hydrogenation of acetylene, Chin. J. Catal, 2017, vol. 38, no. 8, p. 1338. https://doi.org/10.1016/S1872-2067(17)62869-9 Ruppert, A.M., Jedrzejczyk, M., Potrzebowska, N., Kazmierczak, K., Brzezinska, M., Sneka-Platek, O., Sautet, P., Keller, N., Michel, C., and Grams, J., Supported gold–nickel nano-alloy as a highly efficient catalyst in levulinic acid hydrogenation with formic acid as an internal hydrogen source, Catal. Sci. Technol., 2018, vol. 8, no. 17, p. 4318. https://doi.org/10.1039/C8CY00462E Wang, F., Zhang, J.-C., Li, W.-Z., and Chen, B.-H., Coke-Resistant Au–Ni/MgAl2O4 Catalyst for direct methanation of syngas, EnergyChem., 2019, vol. 39, p. 198. https://doi.org/10.1016/j.jechem.2019.03.028 Chin, Y.-H., King, D.L., Roh, H.-S., Wang, Y., and Heald, S.M., Structure and reactivity investigations on supported bimetallic Au-Ni catalysts used for hydrocarbon steam reforming, J. Catal., 2006, vol. 244, no. 2, p. 153. https://doi.org/10.1016/j.jcat.2006.08.016 Molenbroek, A.M., Norskov, J.K., and Clausen, B.S., Structure and reactivity of Ni−Au nanoparticle catalysts, J. Phys. Chem. B, 2001, vol. 105, no. 23, p. 5450. https://doi.org/10.1021/jp0043975 Grishin, M.V., Gatin, A.K., Dokhlikova, N.V., Kirsankin, A.A., Kulak, A.I., Nikolaev, S.A., and Shub, B.R., Adsorption and interaction of hydrogen and oxygen on the surface of separate crystalline gold nanoparticles, Kinet. Catal., 2015, vol. 56, no. 4, p. 532. https://doi.org/10.1134/S0023158415040084 Grishin, M.V., Gatin, A.K., Sarvadii, S.Y., and Shub, B.R., Study of adsorption and interaction of H2, O2, and CO on the surface of single gold nanoparticles and nickel by scanning tunneling microscopy, Nanotechnol. Russ., 2017, vol. 12, nos. 11–12, p. 589. https://doi.org/10.1134/S1995078017060040 Gatin, A.K., Grishin, M.V., Sarvadii, S.Y., and Shub, B.R., Interaction of Gaseous Reagents on Gold and Nickel Nanoparticles, Russ. J. Phys. Chem., 2018, vol. 12, no. 2, p. 317. https://doi.org/10.1134/S1990793118020069 Aragonès, A.C., Haworth, N.L., Darwish, N., Ciampi, S., Bloomfield, N.J., Wallace, G.G., Diez-Perez, I., and Coote, M.L., Electrostatic catalysis of a diels–alder reaction, Nature, 2016, vol. 531, p. 88. https://doi.org/10.1038/nature16989 Martín, L., Molins, E., and Vallribera, A., Tuning and enhancement of the Mizoroki–Heck reaction using polarized Pd nanocomposite carbon aerogels, New J. Chem., 2016, vol. 40, no. 12, p. 10208. https://doi.org/10.1039/C6NJ02279K Sarvadiy, S.Y., Gatin, A.K., Grishin, M.V., Kharitonov, V.A., Kolchenko, N.N., Dokhlikova, N.V., and Shub, B.R., Electric field–prevented adsorption of hydrogen on supported gold nanoparticles, Gold Bull., 2019, vol. 52, no. 2, p. 61. https://doi.org/10.1007/s13404-019-00253-1 Sarvadii, S.Y., Gatin, A.K., Kharitonov, V.A., Dokhlikova, N.V., Ozerin, S.A., Grishin, M.V., and Shub, B.R., Effect of CO molecule orientation on the reduction of Cu-based nanoparticles, Nanomaterials, 2021, vol. 11, no. 2, p. 279. https://doi.org/10.3390/nano11020279 Binnig, G., Rohrer, H., Berber, C., and Weibel, E., Tunneling through a controllable vacuum gap, Appl. Phys. Lett., 1982, vol. 40, no. 2, p. 178. https://doi.org/10.1063/1.92999 Meyer, E., Hug, H.J., and Bennewitz, R., Scanning Probe Microscopy, Berlin: Springer, 2004. Hamers, R.J. and Wang, Y.J., Atomically-resolved studies of the chemistry and bonding at silicon surfaces, Chem. Rev., 1996, vol. 96, no. 4, p. 1261. https://doi.org/10.1021/cr950213k Hamers, R.J., Tromp, R.M., and Demuth, J.E., Surface electronic structure of Si (111)-(7×7) resolved in real space, Phys. Rev. Lett., 1986, vol. 56, no. 8, p. 1972. https://doi.org/10.1103/PhysRevLett.56.1972 Schintke, S., Messerli, S., Pivetta, M., Patthey, F., Libi-oulle, L., Stengel, M., De Vita, A., and Schneider, W.-D., Insulator at the ultrathin limit: MgO on Ag(001), Phys. Rev. Lett., 2002, vol. 87, no. 27, p. 276801. https://doi.org/10.1103/PhysRevLett.87.276801 Kovalevskii, S., Dalidchik, F., Grishin, M., Kolchenko, N., and Shub, B., Scanning tunneling spectroscopy of vibrational transitions, Appl. Phys. A, 1998, vol. 66, p. S125. https://doi.org/10.1007/s003390051114 Irwin, M.D., Buchholz, D.B., Hains, A.W., Chang, R.P.H., and Marks, T.J., p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 8, p. 2783. https://doi.org/10.1073/pnas.0711990105 Divi, S. and Chatterjee, A., Generalized nano-thermodynamic model for capturing size-dependent surface segregation in multi-metal alloy nanoparticles, RSC Adv., 2018, vol. 8, p. 10409. https://doi.org/10.1039/C8RA00945G Dey, S. and Mehta, N.S., Oxidation of carbon monoxide over various nickel oxide catalysts in different conditions: A review, Chem. Eng. J. Adv., 2020, vol. 1, p. 100008. https://doi.org/10.1016/j.ceja.2020.100008 Grishin, M.V., Gatin, A.K., Kharitonov, V.A., Ozerin, S.A., Sarvadii, S.Yu., and Shub, B.R., Interaction of gases with single clusters of gold and copper-based nanoparticles in the presence of electric fields, Russ. J. Phys. Chem., 2022, vol. 16, no. 2, p. 211. https://doi.org/10.1134/S199079312232001X Vesecky, S.M., Xu, X., and Goodman, D.W., Infrared study of CO on NiO(100), J. Vac. Sci. Technol., A, 1994, vol. 12, no. 4, p. 2114. https://doi.org/10.1116/1.579146 Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., De Gironcoli, S., Delugas, P., Distasio, R. A., Jr., Ferretti, A., Floris, A., Fratesi, G, Fugallo, G, Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.‑Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N. L., Nguyen, H.-V., Otero-De-La-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A. P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., and Wu, X., Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys. Condens. Matter, 2009, vol. 21, p. 395502. https://doi.org/10.1088/1361-648X/aa8f79 Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, no. 18, p. 3865. Perdew, J., Ruzsinsky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., and Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett., 2008, vol. 100, no. 13, p. 136406. https://doi.org/10.1103/PhysRevLett.100.136406 Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 1990, vol. 41, no. 11, p. 7892. https://doi.org/10.1103/PhysRevB.41.7892