Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tương tác giữa các hạt nano vàng và nickel với hydro phân tử và carbon monoxide trong điều kiện có mặt của trường điện
Tóm tắt
Một lớp coating nano cấu trúc vàng-nickel đã được tổng hợp trên bề mặt than chì nhiệt phân. Các thuộc tính vật lý – hóa học của nó đã được nghiên cứu bằng kính hiển vi quét tần số hầm và quang phổ, quang phổ Auger, khối phổ và các phương pháp khác. Đã phát hiện rằng lớp coating bao gồm các cụm hình thành từ các hạt nano vàng và nickel. Nghiên cứu đã chỉ ra rằng một trường điện có thể ức chế hoặc kích thích sự hấp thụ hydro trên vàng và sự khử bề mặt oxit của các hạt nano nickel bằng carbon monoxide. Cơ chế ảnh hưởng của trường điện đến các quá trình hóa học liên quan đến H2 và CO là khác nhau. Mô phỏng hóa học lượng tử đã cho phép xác định các giá trị của các hàng rào năng lượng cho sự hấp thụ CO trên các hạt nano nickel.
Từ khóa
#hạt nano #vàng #nickel #hydro #carbon monoxide #trường điện #hấp thụ #mô phỏng hóa học lượng tửTài liệu tham khảo
Roldan Cuenya, B., Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects, Thin Solid Films, 2010, vol. 518, no. 12, p. 3127. https://doi.org/10.1016/j.tsf.2010.01.018
Gerasimov, G.N., Ikim, M.I., Gromov, V.F., Ilegbusi, O.J., and Trakhtenberg, L.I., Chemical modification of impregnated SnO2-In2O3 nanocomposites due to interaction of sensor components, J. Alloys Compd., 2021, vol. 883, p. 160817. https://doi.org/10.1016/j.jallcom.2021.160817
Wang, X., Tang, F., Qi, X., Lin, Z., Battocchi, D., and Chen, X., Enhanced protective coatings based on nanoparticle fullerene C60 for oil & gas pipeline corrosion mitigation, Nanomaterials, 2019, vol. 9, no. 10, p. 1476. https://doi.org/10.3390/nano9101476
Chopani, S.M.H., Asadi, S., and Heravi, M.M., Application of bimetallic and trimetallic nanoparticles supported on graphene as novel heterogeneous catalysts in the reduction of nitroarenes, homo-coupling, suzuki-miyaura and sonogashira reactions, Current Organic Chemistry, 2020, vol. 24, no. 19, p. 2216. https://doi.org/10.2174/1385272824999200914111559
Keane, M.A., Gomez-Quero, S., Cardenas-Lizana, F., and Shen, W., Alumina-supported Ni-Au: Surface synergistic effects in catalytic hydrodechlorination, ChemCatChem, 2009, vol. 1, no. 2, p. 270. https://doi.org/10.1002/cctc.200900070
Yuan, G., Louis, C., Delannoy, L., and Keane, M.A., Silica- and titania-supported Ni–Au: Application in catalytic hydrodechlorination, J. Catal., 2007, vol. 247, no. 2, p. 256. “ https://doi.org/10.1016/j.jcat.2007.02.008
Wu, Z., Zhao, Z., and Zhang, M., Synthesis by replacement reaction and application of TiO2-supported Au–Ni bimetallic catalyst, ChemCatChem, 2010, vol. 2, no. 12, p. 1606. https://doi.org/10.1002/cctc.201000165
Cardenas-Lizana, F., Gomez-Quero, S., Jacobs, G., Ji, Y., Davis, B.H., Kiwi-Minsker, L., and Keane, M.A., Alumina supported Au–Ni: Surface synergism in the gas phase hydrogenation of nitro-compounds, J. Phys. Chem. C, 2012, vol. 116, no. 20, p. 11166. https://doi.org/10.1021/jp3025528
Cardenas-Lizana, F. and Keane, M.A., Gas phase selective hydrogenation over oxide supported Ni–Au, Phys. Chem. Chem. Phys., 2015, vol. 17, no. 42, p. 28088. https://doi.org/10.1039/c5cp00282f
Wei, H., Wei, X., Yang, X., Yin, G., Wang, A., Liu, X., Huang, Y., and Zhang, T., Supported Au-Ni nano-alloy catalysts for the chemoselective hydrogenation of nitroarenes, Chin. J. Catal., 2015, vol. 36, no. 2, p. 160. https://doi.org/10.1016/S1872-2067(14)60254-0
Nikolaev, S.A. and Smirnov, V.V., Synergistic and size effects in selective hydrogenation of alkynes on gold nanocomposites, Catal. Today, 2009, vol. 147, p. S336. https://doi.org/10.1016/j.cattod.2009.07.032
Aguilar-Tapia, A., Delannoy, L., Louis, C., Han, C.W., Ortalan, V., and Zanella, R., Selective hydrogenation of 1,3-butadiene over bimetallic Au-Ni/TiO2 catalysts prepared by deposition-precipitation with urea, J. Catal., 2016, vol. 344, p. 515. https://doi.org/10.1016/j.jcat.2016.10.025
Chai, M., Liu, X., Li, L., Pei, G., Ren, Y., Su, Y., Cheng, H., Wang, A., and Zhang, T., SiO2-supported Au-Ni bimetallic catalyst for the selective hydrogenation of acetylene, Chin. J. Catal, 2017, vol. 38, no. 8, p. 1338. https://doi.org/10.1016/S1872-2067(17)62869-9
Ruppert, A.M., Jedrzejczyk, M., Potrzebowska, N., Kazmierczak, K., Brzezinska, M., Sneka-Platek, O., Sautet, P., Keller, N., Michel, C., and Grams, J., Supported gold–nickel nano-alloy as a highly efficient catalyst in levulinic acid hydrogenation with formic acid as an internal hydrogen source, Catal. Sci. Technol., 2018, vol. 8, no. 17, p. 4318. https://doi.org/10.1039/C8CY00462E
Wang, F., Zhang, J.-C., Li, W.-Z., and Chen, B.-H., Coke-Resistant Au–Ni/MgAl2O4 Catalyst for direct methanation of syngas, EnergyChem., 2019, vol. 39, p. 198. https://doi.org/10.1016/j.jechem.2019.03.028
Chin, Y.-H., King, D.L., Roh, H.-S., Wang, Y., and Heald, S.M., Structure and reactivity investigations on supported bimetallic Au-Ni catalysts used for hydrocarbon steam reforming, J. Catal., 2006, vol. 244, no. 2, p. 153. https://doi.org/10.1016/j.jcat.2006.08.016
Molenbroek, A.M., Norskov, J.K., and Clausen, B.S., Structure and reactivity of Ni−Au nanoparticle catalysts, J. Phys. Chem. B, 2001, vol. 105, no. 23, p. 5450. https://doi.org/10.1021/jp0043975
Grishin, M.V., Gatin, A.K., Dokhlikova, N.V., Kirsankin, A.A., Kulak, A.I., Nikolaev, S.A., and Shub, B.R., Adsorption and interaction of hydrogen and oxygen on the surface of separate crystalline gold nanoparticles, Kinet. Catal., 2015, vol. 56, no. 4, p. 532. https://doi.org/10.1134/S0023158415040084
Grishin, M.V., Gatin, A.K., Sarvadii, S.Y., and Shub, B.R., Study of adsorption and interaction of H2, O2, and CO on the surface of single gold nanoparticles and nickel by scanning tunneling microscopy, Nanotechnol. Russ., 2017, vol. 12, nos. 11–12, p. 589. https://doi.org/10.1134/S1995078017060040
Gatin, A.K., Grishin, M.V., Sarvadii, S.Y., and Shub, B.R., Interaction of Gaseous Reagents on Gold and Nickel Nanoparticles, Russ. J. Phys. Chem., 2018, vol. 12, no. 2, p. 317. https://doi.org/10.1134/S1990793118020069
Aragonès, A.C., Haworth, N.L., Darwish, N., Ciampi, S., Bloomfield, N.J., Wallace, G.G., Diez-Perez, I., and Coote, M.L., Electrostatic catalysis of a diels–alder reaction, Nature, 2016, vol. 531, p. 88. https://doi.org/10.1038/nature16989
Martín, L., Molins, E., and Vallribera, A., Tuning and enhancement of the Mizoroki–Heck reaction using polarized Pd nanocomposite carbon aerogels, New J. Chem., 2016, vol. 40, no. 12, p. 10208. https://doi.org/10.1039/C6NJ02279K
Sarvadiy, S.Y., Gatin, A.K., Grishin, M.V., Kharitonov, V.A., Kolchenko, N.N., Dokhlikova, N.V., and Shub, B.R., Electric field–prevented adsorption of hydrogen on supported gold nanoparticles, Gold Bull., 2019, vol. 52, no. 2, p. 61. https://doi.org/10.1007/s13404-019-00253-1
Sarvadii, S.Y., Gatin, A.K., Kharitonov, V.A., Dokhlikova, N.V., Ozerin, S.A., Grishin, M.V., and Shub, B.R., Effect of CO molecule orientation on the reduction of Cu-based nanoparticles, Nanomaterials, 2021, vol. 11, no. 2, p. 279. https://doi.org/10.3390/nano11020279
Binnig, G., Rohrer, H., Berber, C., and Weibel, E., Tunneling through a controllable vacuum gap, Appl. Phys. Lett., 1982, vol. 40, no. 2, p. 178. https://doi.org/10.1063/1.92999
Meyer, E., Hug, H.J., and Bennewitz, R., Scanning Probe Microscopy, Berlin: Springer, 2004.
Hamers, R.J. and Wang, Y.J., Atomically-resolved studies of the chemistry and bonding at silicon surfaces, Chem. Rev., 1996, vol. 96, no. 4, p. 1261. https://doi.org/10.1021/cr950213k
Hamers, R.J., Tromp, R.M., and Demuth, J.E., Surface electronic structure of Si (111)-(7×7) resolved in real space, Phys. Rev. Lett., 1986, vol. 56, no. 8, p. 1972. https://doi.org/10.1103/PhysRevLett.56.1972
Schintke, S., Messerli, S., Pivetta, M., Patthey, F., Libi-oulle, L., Stengel, M., De Vita, A., and Schneider, W.-D., Insulator at the ultrathin limit: MgO on Ag(001), Phys. Rev. Lett., 2002, vol. 87, no. 27, p. 276801. https://doi.org/10.1103/PhysRevLett.87.276801
Kovalevskii, S., Dalidchik, F., Grishin, M., Kolchenko, N., and Shub, B., Scanning tunneling spectroscopy of vibrational transitions, Appl. Phys. A, 1998, vol. 66, p. S125. https://doi.org/10.1007/s003390051114
Irwin, M.D., Buchholz, D.B., Hains, A.W., Chang, R.P.H., and Marks, T.J., p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 8, p. 2783. https://doi.org/10.1073/pnas.0711990105
Divi, S. and Chatterjee, A., Generalized nano-thermodynamic model for capturing size-dependent surface segregation in multi-metal alloy nanoparticles, RSC Adv., 2018, vol. 8, p. 10409. https://doi.org/10.1039/C8RA00945G
Dey, S. and Mehta, N.S., Oxidation of carbon monoxide over various nickel oxide catalysts in different conditions: A review, Chem. Eng. J. Adv., 2020, vol. 1, p. 100008. https://doi.org/10.1016/j.ceja.2020.100008
Grishin, M.V., Gatin, A.K., Kharitonov, V.A., Ozerin, S.A., Sarvadii, S.Yu., and Shub, B.R., Interaction of gases with single clusters of gold and copper-based nanoparticles in the presence of electric fields, Russ. J. Phys. Chem., 2022, vol. 16, no. 2, p. 211. https://doi.org/10.1134/S199079312232001X
Vesecky, S.M., Xu, X., and Goodman, D.W., Infrared study of CO on NiO(100), J. Vac. Sci. Technol., A, 1994, vol. 12, no. 4, p. 2114. https://doi.org/10.1116/1.579146
Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., De Gironcoli, S., Delugas, P., Distasio, R. A., Jr., Ferretti, A., Floris, A., Fratesi, G, Fugallo, G, Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.‑Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N. L., Nguyen, H.-V., Otero-De-La-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A. P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., and Wu, X., Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys. Condens. Matter, 2009, vol. 21, p. 395502. https://doi.org/10.1088/1361-648X/aa8f79
Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, no. 18, p. 3865.
Perdew, J., Ruzsinsky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., and Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett., 2008, vol. 100, no. 13, p. 136406. https://doi.org/10.1103/PhysRevLett.100.136406
Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 1990, vol. 41, no. 11, p. 7892. https://doi.org/10.1103/PhysRevB.41.7892
