Tương tác giữa 24-epibrassinolide và axit salicylic điều chỉnh nội dung sắc tố, phản ứng phòng thủ chống oxy hóa và biểu hiện gen ở cây giống Brassica juncea L. dưới căng thẳng Pb

Springer Science and Business Media LLC - Tập 25 - Trang 15159-15173 - 2018
Sukhmeen Kaur Kohli1, Neha Handa1, Anket Sharma1,2, Vandana Gautam1, Saroj Arora1, Renu Bhardwaj1, Leonard Wijaya3, Mohammed Nasser Alyemeni3, Parvaiz Ahmad3,4
1Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
2Department of Botany, DAV University, Jalandhar, India
3Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
4Department of Botany, S.P. College, Jammu and Kashmir, India

Tóm tắt

Chì (Pb) được coi là một trong những chất ô nhiễm nguy hại nhất, và sự tích lũy của nó trong đất và thực vật là một mối quan tâm chính. Để hiểu vai trò của hormon thực vật trong việc chống lại căng thẳng kim loại nặng, nghiên cứu hiện tại được lên kế hoạch để đánh giá các tác động tương tác của 24-epibrassinolide (EBL) (10−7 M) và axit salicylic (SA) (1 mM) trong việc điều chỉnh sự phát triển, nội dung sắc tố, phản ứng phòng thủ chống oxy hóa, và biểu hiện gen ở các cây giống Brassica juncea L. bị phơi nhiễm với các nồng độ khác nhau của kim loại Pb (0,25, 0,50 và 0,75 mM). Sự giảm chiều dài rễ và thân, nội dung chlorophyll và carotenoid, và các chất chống oxy hóa không enzim như glutathione, axit ascorbic và tocopherol đã được quan sát thấy trong phản ứng với độc tính Pb. Các chất chống oxy hóa enzym như guaiacol peroxidase (POD), ascorbate peroxidase (APOX), glutathione peroxidase (GR), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), glutathione-S-transferase (GST), và glutathione peroxidase (GPOX) đã giảm xuống trong phản ứng với các điều trị Pb. Các enzym chống oxy hóa khác bao gồm superoxide dismutase (SOD), catalase (CAT), và polyphenol oxidase (PPO) đã tăng lên dưới căng thẳng kim loại. Việc đồng ứng dụng EBL + SA cho các cây giống được điều trị với 0,75 mM Pb dẫn đến sự cải thiện chiều dài rễ và thân, cũng như nội dung chlorophyll và carotenoid. Tương tự, nội dung của glutathione, axit ascorbic và tocopherol cũng đã được nâng cao. Các chất chống oxy hóa enzym cũng được cải thiện đáng kể trong phản ứng với điều trị kết hợp cả hai hormon trước khi gieo. Phân tích biểu hiện gen cho thấy sự gia tăng biểu hiện của gen CAT, POD, GR, DHAR, và GST do ứng dụng EBL. Kết quả của chúng tôi cho thấy rằng độc tính của kim loại Pb gây ảnh hưởng xấu đến cây giống B. juncea L., nhưng điều trị ngâm trước với EBL và SA riêng lẻ và kết hợp giúp các cây giống chống lại tác động xấu của Pb bằng cách cải thiện sự phát triển, nội dung sắc tố và điều chỉnh hệ thống phòng thủ chống oxy hóa. Việc ứng dụng kết hợp EBL và SA được phát hiện là hiệu quả hơn trong việc cải thiện căng thẳng Pb so với việc điều trị riêng lẻ.

Từ khóa

#Chì #Brassica juncea #hormon thực vật #stress kim loại nặng #hiệu ứng đồng ứng dụng.

Tài liệu tham khảo

Acharya BR, Assmann SM (2008) Hormone interactions in stomatal function. Plant Mol Biol 69:451–462. https://doi.org/10.1007/s11103-008-9427-0 Aebi H (1984) Catalase. In: Bergmeyer H (ed) Methods of enzymatic analysis. Vol 111. Verlag Chemie, pp 273–286 Ahamed M, Siddiqui MKJ (2007) Low level lead exposure and oxidative stress: current opinions. Clin Chim Acta 383:57–64. https://doi.org/10.1016/j.cca.2007.04.024 Ahmad P, Abdel Latef AA, Hashem A, Abd_Allah EF, Gucel S, Tran L-SP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00347 Akinci IE, Akinci S, Yilmaz K (2010) Response of tomato (Solanum lycopersicum L.) to lead toxicity: growth, element uptake, chlorophyll and water content. Afr J Agric Res 5:416–423 Alam MM, Hasanuzzaman M, Nahar K, Fujita M (2013) Exogenous salicylic acid ameliorates short-term drought stress in mustard (Brassica juncea L.) seedlings by up-regulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 7:1053 Al-Hakimi A-BM, Hamada AM (2011) Ascorbic acid, thiamine or salicylic acid induced changes in some physiological parameters in wheat grown under copper stress. Plant Protect Sci 47:92–108 Alyemeni MN, Hayat Q, Wijaya L, Hayat S (2014) Effect of salicylic acid on the growth, photosynthetic efficiency and enzyme activities of leguminous plant under cadmium stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 42. doi:https://doi.org/10.15835/nbha.42.2.9447 Andra SS, Datta R, Sarkar D, Makris KC, Mullens CP, Sahi SV, Bach SBH (2009) Synthesis of phytochelatins in vetiver grass upon lead exposure in the presence of phosphorus. Plant Soil 326:171–185. https://doi.org/10.1007/s11104-009-9992-2 Anjum NA, Singh HP, Khan MIR, Masood A, Per TS, Negi A, Batish DR, Khan NA, Duarte AC, Pereira E, Ahmad I (2015) Too much is bad-an appraisal of phototoxicity of elevated plant-beneficial heavy metal ions. 22:3361–3382. doi:https://doi.org/10.1007/s11356-014-3849-9 Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15 Arora P, Bhardwaj R, Kumar Kanwar M (2010) 24-Epibrassinolide induced antioxidative defense system of Brassica juncea L. under Zn metal stress. Physiol Mol Biol Plants 16:285–293. https://doi.org/10.1007/s12298-010-0031-9 Arora P, Bhardwaj R, Kanwar MK (2012) Effect of 24-epibrassinolide on growth, protein content and antioxidative defense system of Brassica juncea L. subjected to cobalt ion toxicity. Acta Physiol Plant 34:2007–2017. https://doi.org/10.1007/s11738-012-1002-2 Asada K (1992) Ascorbate peroxidase—a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85:235–241. https://doi.org/10.1111/j.1399-3054.1992.tb04728.x Bajguz A (2000) Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiol Biochem 38:797–801. https://doi.org/10.1016/s0981-9428(00)01185-2 Bajguz A (2010) An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ Exp Bot 68:175–179. https://doi.org/10.1016/j.envexpbot.2009.11.003 Bazzaz FA, Rolfe GL, Windle P (1974) Differing sensitivity of corn and soybean photosynthesis and transpiration to lead contamination. J Environ Qual 3:156. https://doi.org/10.2134/jeq1974.00472425000300020015x Bharwana SA, Ali S, Farooq MA, Iqbal N, Hameed A, Abbas F, Ahmad MSA (2014) Glycine betaine-induced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. Turk J Bot 38:281–292. https://doi.org/10.3906/bot-1304-65 Bhatti K, Anwar S, Nawaz K, Hussain K (2013) Effect of heavy metal lead (Pb) stress of different concentration on wheat (Triticum aestivum L.) Middle-East J Sci Res 14:148–154 Biesaga-Koscielniak J, Dziurka M, Ostrowska A, Mirek M, Koscielniak J, Janeczko A (2014) Brassinosteroid improves content of antioxidants in seeds of selected leguminous plants. Aust J Crop Sci 8:378 Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480 Chen J, Zhu C, Li L-p, Z-y S, X-b P (2007) Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress. J Environ Sci 19:44–49. https://doi.org/10.1016/s1001-0742(07)60007-2 Chen X, Li W, Lu Q, Wen X, Li H, Kuang T, Li Z, Lu C (2011) The xanthophyll cycle and antioxidative defense system are enhanced in the wheat hybrid subjected to high light stress. J Plant Physiol 168:1828–1836. https://doi.org/10.1016/j.jplph.2011.05.019 Dalton DA, Russell SA, Hanus FJ, Pascoe GA, Evans HJ (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc Natl Acad Sci 83:3811–3815. https://doi.org/10.1073/pnas.83.11.3811 Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151. https://doi.org/10.1186/1471-2229-10-151 Dong J, Bergmann DC (2010) Stomatal patterning and development. Elsevier. doi:https://doi.org/10.1016/s0070-2153(10)91009-0 Eun S-O, Shik Youn H, Lee Y (2000) Lead disturbs microtubule organization in the root meristem of Zea mays. Physiol Plant 110:357–365. https://doi.org/10.1034/j.1399-3054.2000.1100310.x Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Elsevier. doi:https://doi.org/10.1016/s0076-6879(84)05015-1, [12] Assays of glutathione peroxidase Flora SJS, Saxena G, Mehta A (2007) Reversal of lead-induced neuronal apoptosis by chelation treatment in rats: role of reactive oxygen species and intracellular Ca2+. J Pharmacol Exp Ther 322:108–116. https://doi.org/10.1124/jpet.107.121996 Gaballah M, Rady M (2012) Salicylic acid mitigates cadmium toxicity by attenuating the oxidative stress in pea (Pisum sativum L.) plants. Int J Biol. Ecol Environ Sci 1:159–165 Gonzalez-Garcia MP, Vilarrasa-Blasi J, Zhiponova M, Divol F, Mora-Garcia S, Russinova E, Cano-Delgado AI (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138:849–859. https://doi.org/10.1242/dev.057331 Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139 Haider S, Kanwal S, Uddin F, Azmat R (2006) Phytotoxicity of Pb: II. Changes in chlorophyll absorption Spectrum due to toxic metal Pb stress on Phaseolus mungo and Lens culinaris. Pak J Biol Sci 9:2062–2068. https://doi.org/10.3923/pjbs.2006.2062.2068 Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300. https://doi.org/10.1007/s00344-007-9017-4 Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395 Hultberg B, Andersson A, Isaksson A (2001) Interaction of metals and thiols in cell damage and glutathione distribution: potentiation of mercury toxicity by dithiothreitol. Toxicology 156:93–100. https://doi.org/10.1016/s0300-483x(00)00331-0 Iglesias MJ, Terrile MC, Casalongué CA (2011) Auxin and salicylic acid signalings counteract the regulation of adaptive responses to stress. Plant Signal Behav 6:452–454. https://doi.org/10.4161/psb.6.3.14676 Imtiyaz S, Agnihotri RK, Ganie SA, Sharma R (2014) Biochemical response of Glycine max (L.) Merr. to cobalt and lead stress. J Stress Physiol Biochem 10 Issak M, Okuma E, Munemasa S, Nakamura Y, Mori IC, Murata Y (2013) Neither endogenous abscisic acid nor endogenous Jasmonate is involved in salicylic acid-, yeast elicitor-, or chitosan-induced stomatal closure in Arabidopsis thaliana. Biosci Biotechnol Biochem 77:1111–1113. https://doi.org/10.1271/bbb.120980 Jazi SB, Yazdi HL, Ranjbar M (2011) Effect of salicylic acid on some plant growth parameters under lead stress in Brassica napus var. okapi Iran J Plant Physiol 1 Jiang N, Luo X, Zeng J, Yang Z, Zheng L, Wang S (2010) Lead toxicity induced growth and antioxidant responses in Luffa cylindrica seedlings. Int J Agric Biol 12:205–210 Kang J, Zeng Z, Liu Y (2009) Effects of lead (Pb2+) stress on seed germination and seedling growth of wheat. Guangxi Agric Sci 40:144–146 Kanwar MK, Poonam, Pal S, Bhardwaj R (2015) Involvement of Asada-Halliwell pathway during phytoremediation of chromium (VI) in Brassica juncea L. plants. Int J Phytoremediation 17:1237–1243. https://doi.org/10.1080/15226514.2015.1058326 Kaur G, Singh HP, Batish DR, Kumar RK (2012) Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead to soil. J Environ Biol 33:265 Khan MIR, Khan NA (2013) Salicylic acid and jasmonates: approaches in abiotic stress tolerance. Plant Biochem Physiol 1:4. https://doi.org/10.4172/2329-9029.1000e113 Khan NA, Nazar R, Iqbal N, Anjum NA (2012) Phytohormones and abiotic stress tolerance in plants. Springer Science & Business Media, Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00462 Kočová M, Rothová O, Holá D, Kvasnica M, Kohout L (2010) The effects of brassinosteroids on photosynthetic parameters in leaves of two field-grown maize inbred lines and their F1 hybrid. Biol Plant 54:785–788. https://doi.org/10.1007/s10535-010-0143-7 Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP (2013) The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep 32:945–957. https://doi.org/10.1007/s00299-013-1461-y Kolaksazov M, Laporte F, Ananieva K, Dobrev P, Herzog M, Ananiev E (2013) Effect of chilling and freezing stresses on jasmonate content in Arabis alpina. Bulg J Agric Sci 19:15–17 Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195. https://doi.org/10.1016/0003-9861(78)90479-4 Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931. https://doi.org/10.1016/j.jplph.2006.11.014 Kumar K, Khan P (1982) Peroxidase and polyphenol oxidase in excised ragi (Eleusine corocana cv PR 202) leaves during senescence. Indian J Exp Biol 20:412–416 Kumar M, Sirhindi G, Bhardwaj R, Kumar S, Jain G (2010) Effect of exogenous H2O2 on antioxidant enzymes of Brassica juncea L. seedlings in relation to 24-epibrassinolide under chilling stress Lamhamdi M, El Galiou O, Bakrim A, Nóvoa-Muñoz JC, Arias-Estévez M, Aarab A, Lafont R (2013) Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings. Saudi J Biol Sci 20:29–36. https://doi.org/10.1016/j.sjbs.2012.09.001 Li Z-G, Yi X-Y, Li Y-T (2014) Effect of pretreatment with hydrogen sulfide donor sodium hydrosulfide on heat tolerance in relation to antioxidant system in maize (Zea mays) seedlings. Biologia 69. doi:https://doi.org/10.2478/s11756-014-0396-2 Lindsey K, Pullen ML, Topping JF (2003) Importance of plant sterols in pattern formation and hormone signalling. Trends Plant Sci 8:521–525. https://doi.org/10.1016/j.tplants.2003.09.012 Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262 Llugany M, Martin SR, Barceló J, Poschenrieder C (2013) Endogenous jasmonic and salicylic acids levels in the cd-hyperaccumulator Noccaea (Thlaspi) praecox exposed to fungal infection and/or mechanical stress. Plant Cell Rep 32:1243–1249. https://doi.org/10.1007/s00299-013-1427-0 Loake G, Grant M (2007) Salicylic acid in plant defence—the players and protagonists. Curr Opin Plant Biol 10:466–472. https://doi.org/10.1016/j.pbi.2007.08.008 Maclachlan S, Zalik S (1963) Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Can J Bot 41:1053–1062 Martinek RG (1964) Method for the determination of vitamin E (total tocopherols) in serum. Clin Chem 10:1078–1086 Meguro A, Sato Y (2014) Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice. Sci Rep 4. https://doi.org/10.1038/srep04555 Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65(6):1027–1039 Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26. https://doi.org/10.1016/j.plaphy.2012.02.003 Mohsenzadeh S, Shahrtash M, Mohabatkar H (2011) Interactive effects of salicylic acid and silicon on some physiological responses of cadmium-stressed maize seedlings. Iran J Sci Technol (Sci) 35:57–60 Mondal NK, Das C, Roy S, Datta JK, Banerjee A (2013) Effect of varying cadmium stress on chickpea (Cicer arietinum l) seedlings: an ultrastructural study. Ann Environ Sci 7 Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ, Tohge T, Yamazaki M, Saito K (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77:367–379. https://doi.org/10.1111/tpj.12388 Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880 Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168:807–815. https://doi.org/10.1016/j.jplph.2010.11.001 Nazar R, Umar S, Khan NA, Sareer O (2015) Salicylic acid supplementation improves photosynthesis and growth in mustard through chnages in proline accumulation and ethylene formation under drought stress. S Afr J Bot 98:84–94. https://doi.org/10.1016/j.sajb.2015.02.005 Okamoto O, Pinto E, Latorre L, Bechara E, Colepicolo P (2001) Antioxidant modulation in response to metal-induced oxidative stress in algal chloroplasts. Arch Environ Contam Toxicol 40:18–24 Pütter J (1974) Peroxidases. Elsevier. doi:https://doi.org/10.1016/b978-0-12-091302-2.50033-5 Ranquet C, Ollagnieret-de-Choudens S, Loiseau L, Barras F, Fontecave M (2007) Cobalt stress in Escherichia coli. The effect on the iron-sulfur proteins. J Biol Chem 282:30442–30451 Raza SH, Shafiq F (2013) Exploring the role of salicylic acid to attenuate cadmium accumulation in radish (Raphanus sativus). Int J Agric Biol 15:547–552 Roe J, Kuether A (1943) The determination of ascorbic acid in whole blood and urine through the 2, 4-dinitrophenylhydrazine deriv ative of dehydroascorbie acid. J Biol Chem 147:399 Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205. https://doi.org/10.1016/0003-2697(68)90092-4 Seregin IV, Kozhevnikova AD (2008) Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russ J Plant Physiol 55:1–22. https://doi.org/10.1134/s1021443708010019 Shahid M et al (2011) Brassinosteroid (24-Epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (‘Pisum sativum’ L.) Aust J Crop Sci 5:500 Shahid M, Dumat C, Pourrut B, Abbas G, Shahid N, Pinelli E (2015) Role of metal speciation in lead-induced oxidative stress to Vicia faba roots. Russ J Plant Physiol 62:448–454. https://doi.org/10.1134/s1021443715040159 Sharma P, Bhardwaj R (2007) Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress. Acta Physiol Plant 29:259–263. https://doi.org/10.1007/s11738-007-0032-7 Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52. https://doi.org/10.1590/s1677-04202005000100004 Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26:2027–2038. https://doi.org/10.1007/s00299-007-0416-6 Sharma P, Bhardwaj R, Arora N, Arora HK, Kumar A (2008) Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in Brassica juncea. Biol Plant 52:767–770. https://doi.org/10.1007/s10535-008-0149-6 Sharma I, Pati PK, Bhardwaj R (2011) Effect of 24-epibrassinolide on oxidative stress markers induced by nickel-ion in Raphanus sativus L. Acta Physiol Plant 33:1723–1735. https://doi.org/10.1007/s11738-010-0709-1 Sharma I, Bhardwaj R, Pati PK (2013) Stress modulation response of 24-epibrassinolide against imidacloprid in an elite indica rice variety Pusa Basmati-1. Pestic Biochem Physiol 105:144–153. https://doi.org/10.1016/j.pestbp.2013.01.004 Sharma I, Bhardwaj R, Pati PK (2015) Exogenous application of 28-Homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite Rice variety Pusa Basmati-1. J Plant Growth Regul 34:509–518. https://doi.org/10.1007/s00344-015-9486-9 Sharma A, Thakur S, Kumar V, Kanwar MK, Kesavan AK, Thukral AK, Bhardwaj R, Alam P, Ahmad P (2016a) Pre-sowing seed treatment with 24-Epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01569 Sharma P, Kumar A, Bhardwaj R (2016b) Plant steroidal hormone epibrassinolide regulate – heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot 122:1–9. https://doi.org/10.1016/j.envexpbot.2015.08.005 Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319. https://doi.org/10.1093/jxb/53.372.1305 Sirhindi G, Mir MA, Abd-Allah EF, Ahmad P, Gucel S (2016) Jasmonic acid modulates the physio-biochemical attributes, antioxidant enzyme activity, and gene expression in Glycine max under nickel toxicity. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00591 Snyman M, Cronje MJ (2008) Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. J Exp Bot 59:2125–2132. https://doi.org/10.1093/jxb/ern075 Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk MH, Miyamoto K (2002) Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem Biophys Res Commun 293:653–659. https://doi.org/10.1016/s0006-291x(02)00265-6 Uzunova A, Popova L (2000) Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica 38:243–250 Vardar F, Ünal M (2007) Aluminum toxicity and resistance in higher plants. Adv Mol Biol 1:1–12 Vardhini BV, Anjum NA (2015) Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Front Environ Sci 2. doi:https://doi.org/10.3389/fenvs.2014.00067 Vicente R, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338. https://doi.org/10.1093/jxb/err031 Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206. https://doi.org/10.1146/annurev.phyto.050908.135202 Wang CR, Wang XR, Tian Y, Yu HX, Gu XY, Du WC, Zhou H (2008) Oxidative stress, defense response, and early biomarkers for lead-contaminated soil in Vicia faba seedlings. Environ Toxicol Chem 27:970–977 Wang C, Tian Y, Wang X, Geng J, Jiang J, Yu H, Wang C (2010) Lead-contaminated soil induced oxidative stress, defense response and its indicative biomarkers in roots of Vicia faba seedlings. Ecotoxicology 19:1130–1139. https://doi.org/10.1007/s10646-010-0496-x Xia XJ, Zhang Y, Wu JX, Wang JT, Zhou YH, Shi K, Yu YL, Yu JQ (2009) Brassinosteroids promote metabolism of pesticides in cucumber. J Agric Food Chem 57:8406–8413. https://doi.org/10.1021/jf901915a Xia X, Gao C, Song L, Zhou Y, Shi K, Yu J (2014) Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum. Plant Cell Environ 37:2036–2050 Yusuf M, Fariduddin Q, Hayat S, Hasan SA, Ahmad A (2010) Protective response of 28-Homobrassinolide in cultivars of Triticum aestivum with different levels of nickel. Arch Environ Contam Toxicol 60:68–76. https://doi.org/10.1007/s00244-010-9535-0 Zengin F (2014) Exogenous treatment with salicylic acid alleviating copper toxicity in bean seedlings. Proc Natl Acad Sci, India Sect B Biol Sci 84:749–755. https://doi.org/10.1007/s40011-013-0285-4 Zhao DY, Shen L, Fan B, Liu KL, Yu MM, Zheng Y, Ding Y, Sheng JP (2009) Physiological and genetic properties of tomato fruits from 2 cultivars differing in chilling tolerance at cold storage. J Food Sci 74:C348–C352. https://doi.org/10.1111/j.1750-3841.2009.01156.x Zhiponova MK, Vanhoutte I, Boudolf V, Betti C, Dhondt S, Coppens F, Mylle E, Maes S, González-García MP, Caño-Delgado AI, Inzé D, Beemster GTS, de Veylder L, Russinova E (2012) Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. New Phytol 197:490–502. https://doi.org/10.1111/nph.12036 Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9. https://doi.org/10.1016/j.jinorgbio.2006.05.011 Zhou ZS, Wang SJ, Yang ZM (2008) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500–1509. https://doi.org/10.1016/j.chemosphere.2007.08.028 Zhou Z, Guo K, Elbaz A, Yang Z (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34. https://doi.org/10.1016/j.envexpbot.2008.06.001 Zhou Y, Xia X, Yu G, Wang J, Wu J, Wang M, Yang Y, Shi K, Yu Y, Chen Z, Gan J, Yu J (2015) Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Sci Rep 5. https://doi.org/10.1038/srep09018