Interaction between sorption and biodegradation processes in the contaminant transport
Tài liệu tham khảo
Barry, 2002, Modelling the fate of oxidisable organic contaminants in groundwater, Adv. Water Resour., 25, 945, 10.1016/S0309-1708(02)00044-1
Bause, 2005, Higher order regularity and approximation of solutions to the Monod biodegradation model, Appl. Numer. Math., 55, 154, 10.1016/j.apnum.2005.02.002
Bear, J., Bachmat, Y., 1991. Introduction to Modeling of Transport Phenomena in Porous Media. Theory and Applications of Transport in Porous Media, vol. 4. Kluwer Academic Publisher.
Bekins, 1998, A comparison of zero-order, first-order, and Monod biotransformation models, Ground Water, 36, 261, 10.1111/j.1745-6584.1998.tb01091.x
Bell, 2004, A split operator approach to reactive transport with the forward particle tracking Eulerian Lagrangian localized adjoint method, Adv. Water Res., 27, 323, 10.1016/j.advwatres.2004.02.004
Brooks, 1982, Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on incompressible Navier–Stokes equations, Comput. Meth. Appl. Mech. Eng., 32, 199, 10.1016/0045-7825(82)90071-8
Celia, 1989, Contaminant transport and biodegradation. 1. A numerical model and test simulations, Water Resour. Res., 25, 1141, 10.1029/WR025i006p01141
Celia, 1989, Contaminant transport and biodegradation. 2. Conceptual model for reactive transport in porous media, Water Resour. Res., 25, 1149, 10.1029/WR025i006p01141
Coutinho, 2004, Stabilized methods and post-processing techniques for miscibles displacements, Comput. Meth. Appl. Mech. Eng., 193, 1421, 10.1016/j.cma.2003.12.031
Couto, 2005, Mathematical modelling of biodegradation processes in a porous medium, Proc. Fourth Brazil. Symp. Math. Comput. Biol., 2, 211
Couto, P.R.L., 2006. Modelagem Computacional do Transporte de Contaminantes com Processos de Biodegradação e Sorção Física em um Meio Poroso Saturado. PhD Thesis. Laboratório Nacional de Computação Científica (LNCC/MCT), Petrópolis/RJ, Brazil.
Farthing, 2006, An ELLAM approximation for advective-dispersive transport with nonlinear sorption, Adv. Water Res., 29, 657, 10.1016/j.advwatres.2005.07.001
Gallo, 1998, A mixed finite element/finite volume approach for solving biodegradation in groundwater, Int. J. Numer. Meth. Fluids, 26, 533, 10.1002/(SICI)1097-0363(19980315)26:5<533::AID-FLD635>3.0.CO;2-D
Hughes, 2000
Kacur, 2005, Solution of contaminant transport with equilibrium and non-equilibrium adsorption, Comput. Meth. Appl. Mech. Eng., 194, 479, 10.1016/j.cma.2004.05.017
Kacur, 2001, Solution of contaminant transport with adsorption in porous media by the method of characteristics, Math. Model. Numer. Anal., 35, 981, 10.1051/m2an:2001146
Kanney, 2003, Comparison of fully coupled approaches for approximating nonlinear transport and reaction problems, Adv. Water Resour., 26, 353, 10.1016/S0309-1708(02)00188-4
Kanney, 2003, Convergence of iterative split-operator approaches for approximating nonlinear reactive transport problems, Adv. Water Resour., 26, 247, 10.1016/S0309-1708(02)00162-8
Karapanagioti, 2003, Model coupling intraparticle diffusion/sorption nonlinear sorption, and biodegradation processes, J. Contam. Hydrol., 48, 1, 10.1016/S0169-7722(00)00179-0
Merz, 2005, Global existence result of bioremediation with Monod kinetics, Adv. Math. Sci. Appl., 15, 709
Odencrantz, J.E., 1991. Modelling the Biodegradation Kinetics of Dissolved Organic Contaminats in a Heterogeneous Two-Dimensional Aquifer. PhD Thesis. Graduate College of the University of Illinois at Urbana-Champaign, USA.
Odencrantz, J.E., Valocchi, A.J., Rittmann, B.E., 1993. Modeling the interaction of sorption and biodegradation on transport in groundwater situ bioremediation systems. In: Poeter, E., Ashlock, S., Proud, J. (Eds.), Groundwater Modeling Conference 2, pp. 3–12.
Remesikova, 2004, Solution of convection-diffusion problems with nonequilibrium adsorption, J. Comput. Appl. Math., 169, 101, 10.1016/j.cam.2003.11.005
Robinson, 2000, Efficient numerical techniques for modeling multicomponent ground-water transport based upon simultaneous solution of strongly coupled subsets of chemical components, Adv. Water Res., 23, 307, 10.1016/S0309-1708(99)00034-2
Serrano, 2001, Solute transport under non-linear sorption and decay, Water Res., 35, 1525, 10.1016/S0043-1354(00)00390-0
Wheeler, M.F., Dawson, C.N., 1987. An Operator-Splitting Method for Advection-Diffusion-Reaction Problems. Rice University Department of Computational and Applied Mathematics, Technical Report 87–9.
Widdowson, 1988, A numerical transport model for oxygen- and nitrate-based respiration linked to substrate and nutrient availability in porous media, Water Resour. Res., 24, 1553, 10.1029/WR024i009p01553
