Interaction between sorption and biodegradation processes in the contaminant transport

Ecological Modelling - Tập 214 - Trang 65-73 - 2008
Paula R.L. Couto1, Sandra M.C. Malta1
1National Laboratory for Scientific Computing (LNCC/MCT), Av. Getúlio Vargas 333, 222561-070 Petrópolis, Brazil

Tài liệu tham khảo

Barry, 2002, Modelling the fate of oxidisable organic contaminants in groundwater, Adv. Water Resour., 25, 945, 10.1016/S0309-1708(02)00044-1 Bause, 2005, Higher order regularity and approximation of solutions to the Monod biodegradation model, Appl. Numer. Math., 55, 154, 10.1016/j.apnum.2005.02.002 Bear, J., Bachmat, Y., 1991. Introduction to Modeling of Transport Phenomena in Porous Media. Theory and Applications of Transport in Porous Media, vol. 4. Kluwer Academic Publisher. Bekins, 1998, A comparison of zero-order, first-order, and Monod biotransformation models, Ground Water, 36, 261, 10.1111/j.1745-6584.1998.tb01091.x Bell, 2004, A split operator approach to reactive transport with the forward particle tracking Eulerian Lagrangian localized adjoint method, Adv. Water Res., 27, 323, 10.1016/j.advwatres.2004.02.004 Brooks, 1982, Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on incompressible Navier–Stokes equations, Comput. Meth. Appl. Mech. Eng., 32, 199, 10.1016/0045-7825(82)90071-8 Celia, 1989, Contaminant transport and biodegradation. 1. A numerical model and test simulations, Water Resour. Res., 25, 1141, 10.1029/WR025i006p01141 Celia, 1989, Contaminant transport and biodegradation. 2. Conceptual model for reactive transport in porous media, Water Resour. Res., 25, 1149, 10.1029/WR025i006p01141 Coutinho, 2004, Stabilized methods and post-processing techniques for miscibles displacements, Comput. Meth. Appl. Mech. Eng., 193, 1421, 10.1016/j.cma.2003.12.031 Couto, 2005, Mathematical modelling of biodegradation processes in a porous medium, Proc. Fourth Brazil. Symp. Math. Comput. Biol., 2, 211 Couto, P.R.L., 2006. Modelagem Computacional do Transporte de Contaminantes com Processos de Biodegradação e Sorção Física em um Meio Poroso Saturado. PhD Thesis. Laboratório Nacional de Computação Científica (LNCC/MCT), Petrópolis/RJ, Brazil. Farthing, 2006, An ELLAM approximation for advective-dispersive transport with nonlinear sorption, Adv. Water Res., 29, 657, 10.1016/j.advwatres.2005.07.001 Gallo, 1998, A mixed finite element/finite volume approach for solving biodegradation in groundwater, Int. J. Numer. Meth. Fluids, 26, 533, 10.1002/(SICI)1097-0363(19980315)26:5<533::AID-FLD635>3.0.CO;2-D Hughes, 2000 Kacur, 2005, Solution of contaminant transport with equilibrium and non-equilibrium adsorption, Comput. Meth. Appl. Mech. Eng., 194, 479, 10.1016/j.cma.2004.05.017 Kacur, 2001, Solution of contaminant transport with adsorption in porous media by the method of characteristics, Math. Model. Numer. Anal., 35, 981, 10.1051/m2an:2001146 Kanney, 2003, Comparison of fully coupled approaches for approximating nonlinear transport and reaction problems, Adv. Water Resour., 26, 353, 10.1016/S0309-1708(02)00188-4 Kanney, 2003, Convergence of iterative split-operator approaches for approximating nonlinear reactive transport problems, Adv. Water Resour., 26, 247, 10.1016/S0309-1708(02)00162-8 Karapanagioti, 2003, Model coupling intraparticle diffusion/sorption nonlinear sorption, and biodegradation processes, J. Contam. Hydrol., 48, 1, 10.1016/S0169-7722(00)00179-0 Merz, 2005, Global existence result of bioremediation with Monod kinetics, Adv. Math. Sci. Appl., 15, 709 Odencrantz, J.E., 1991. Modelling the Biodegradation Kinetics of Dissolved Organic Contaminats in a Heterogeneous Two-Dimensional Aquifer. PhD Thesis. Graduate College of the University of Illinois at Urbana-Champaign, USA. Odencrantz, J.E., Valocchi, A.J., Rittmann, B.E., 1993. Modeling the interaction of sorption and biodegradation on transport in groundwater situ bioremediation systems. In: Poeter, E., Ashlock, S., Proud, J. (Eds.), Groundwater Modeling Conference 2, pp. 3–12. Remesikova, 2004, Solution of convection-diffusion problems with nonequilibrium adsorption, J. Comput. Appl. Math., 169, 101, 10.1016/j.cam.2003.11.005 Robinson, 2000, Efficient numerical techniques for modeling multicomponent ground-water transport based upon simultaneous solution of strongly coupled subsets of chemical components, Adv. Water Res., 23, 307, 10.1016/S0309-1708(99)00034-2 Serrano, 2001, Solute transport under non-linear sorption and decay, Water Res., 35, 1525, 10.1016/S0043-1354(00)00390-0 Wheeler, M.F., Dawson, C.N., 1987. An Operator-Splitting Method for Advection-Diffusion-Reaction Problems. Rice University Department of Computational and Applied Mathematics, Technical Report 87–9. Widdowson, 1988, A numerical transport model for oxygen- and nitrate-based respiration linked to substrate and nutrient availability in porous media, Water Resour. Res., 24, 1553, 10.1029/WR024i009p01553