Interaction between multiple spatial solitons in the diffraction catastrophe region upon focusing a high-power laser beam in a nonlinear medium
Tóm tắt
When a high-power laser beam is focused in a nonlinear Kerr medium, beam self-diffraction by induced inhomogeneities of the refractive index is observed. A method for calculating the field amplitude and phase in the focal region with regard for self-diffraction by self-induced inhomogeneities is developed. Computer analysis of saturable Kerr media showed that the optical-field region with the least cross section of the focal pattern is followed by that of chaotically radiating “splashes” and long filaments. The latter radiate outward from the region of the caustic waist over long distances. They represent bright spatial solitons, which channel a significant portion of the primary beam energy. No less than 8–12 clear-cut solitons traveling in the positive z direction and moving apart in the transverse (x, y) plane are observed in the cross section. The field amplitude oscillates along each of the solitons. Various parameters of the saturable Kerr medium are taken into account.
Tài liệu tham khảo
V. V. Afanasjev, P. L. Chu, and Yu. S. Kivshar, Opt. Lett. 22, 1388 (1997).
S. Gatz and J. Herrmann, J. Opt. Soc. Am. B 14, 1795 (1997).
A. W. Snyder and Yu. S. Kivshar, J. Opt. Soc. Am. B 14, 3025 (1997).
H. Maillotte, J. Monneret, A. Barthelemy, and C. Froehly, Opt. Commun. 109, 265 (1994).
E. A. Ostrovskaya and Yu. S. Kivshar, J. Opt. B: Quantum Semiclassical Opt., No. 1, 77 (1999).
R. de la Fuente, J. Linares, H. Michinel, et al., Pure Appl. Opt. 6, 31 (1997).
A. Ankiewicz, W. Krolikowski, and N. Akhmediev, Phys. Rev. E 59, 6079 (1999).
A. V. Buryak and V. V. Steblina, J. Opt. Soc. Am. B 16, 245 (1999).
E. Granot, S. Sternklar, Y. Isbi, et al., Opt. Commun. 166, 121 (1999).
G. Leo and G. Assanto, J. Opt. Soc. Am. B 14, 3151 (1997).
W. Krolikowski, C. Denz, A. Stepken, et al., J. Opt. B: Quantum Semiclassical Opt., No. 10, 823 (1998).
N. V. Vysotina, L. A. Nesterov, N. N. Rozanov, and V. A. Smirnov, Opt. Spektrosk. 85(2), 239 (1998) [Opt. Spectrosc. 85, 218 (1998)].
N. N. Rozanov, Opt. Spektrosk. 82(5), 820 (1997) [Opt. Spectrosc. 82, 761 (1997)].
L. Torner and D. V. Petrov, J. Opt. Soc. Am. B 14, 2017 (1997).
E. Wolf and Y. Li, Opt. Commun. 39, 205 (1981).
D. C. Bertilone, Opt. Commun. 85, 153 (1991).
V. Yu. Osipov, Opt. Spektrosk. 75(1), 155 (1993) [Opt. Spectrosc. 75, 92 (1993)].
B.-Z. Dong, G.-Z. Yang, B.-Y. Gu, and O. K. Ersoy, J. Opt. Soc. Am. A 13, 97 (1996).
D. Y. Jiang and J. J. Stamnes, Pure Appl. Opt. 6, 85 (1997).
W. Hsu and R. Barakat, J. Opt. Soc. Am. A 11, 623 (1994).
P. Torok, P. Varga, and G. R. Booker, J. Opt. Soc. Am. A 12, 2136 (1995).
D. G. Flagello, T. Milster, and A. E. Rosenbluth, J. Opt. Soc. Am. A 13(1), 53 (1996).
M. V. Berry and C. Upstill, in Progress in Optics, Ed. by E. Wolf (North-Holland, Amsterdam, 1980), Vol. 18, pp. 257–346.
M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, New York, 1964; Nauka, Moscow, 1973).
A. M. Deykoon, M. S. Soskin, and G. A. Swartzlander, Jr., Opt. Lett. 24(17), 1224 (1999).
N. K. Andreev, Yu. A. Aristov, L. Ya. Polonskii, and L. N. Pyatnitskii, Zh. Éksp. Teor. Fiz. 100, 1756 (1991) [Sov. Phys. JETP 73, 969 (1991)].
V. Yu. Osipov, Zh. Tekh. Fiz. 68(9), 74 (1998) [Tech. Phys. 43, 1075 (1998)].
M. Scalora and M. E. Crenshaw, Opt. Commun. 108, 191 (1994).
M. D. Feit and J. A. Fleck, Jr., J. Opt. Soc. Am. B 5, 633 (1988).
P. Paakkonen, P. Vahimaa, A. T. Friberg, and J. Turunen, Pure Appl. Opt. 7, 1033 (1998).
D. Li, H. van Brug, and H. J. Frankena, Pure Appl. Opt. 4, 475 (1995).
L. di Menza, J. Opt. B: Quantum Semiclassical Opt., No. 1, 19 (1999).
R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, New York, 1971; Mir, Moscow, 1973).
V. Yu. Osipov, Avtometriya 5, 48 (1996).
L. Poladian, A. W. Snyder, and D. J. Mitchell, Opt. Commun. 85, 59 (1991).