Interaction between an elliptic vortex ring and a bubble: effect of capture angle

Sādhanā - 2024
Manoj N Dixit1, Raghuraman N Govardhan1
1Department of Mechanical Engineering, Indian Institute of Science, Bengaluru, India

Tóm tắt

The rich interaction of multiple bubbles with multiple vortical structures makes the study of bubbly turbulent flows quite challenging. An idealisation of this problem would be the interaction between a single bubble and an elliptic vortex ring, the latter of which can be considered a representative vortical structure. The elliptic vortex ring is characterised by its initial aspect ratio $$AR_0$$ , defined as the ratio of the semi-minor to semi-major axes of the ellipse, with $$AR_0=1$$ corresponding to a circular vortex ring. In the first part, we focus on the interaction between the elliptic vortex ring ( $$AR_0 = 0.6$$ ) and a bubble, where we explore the effects of the capture angle ( $$\theta _C$$ ) on the different quantities relevant to the ring as well as the bubble, using simultaneous side and top-view high-speed visualisations; $$\theta _C$$ is defined as the angle subtended by the bubble with the instantaneous major axis of the elliptic vortex ring at bubble capture. We study the effect of $$\theta _C$$ on the reduction in the ring’s convection speed $$\Delta U^*$$ and the number of daughter bubbles $$N_b$$ , computed at a later stage of the interaction. For this part of the study, the Weber number $$We=\rho U_0^2 D_b/\sigma $$ , defined as the ratio of the ring’s inertial effects to surface tension effects, is fixed at $$We=11$$ . We find that bubble capture at lower capture angles ( $$\theta _C \approx 0^\circ $$ ) corresponding to the high-curvature part of the elliptic vortex ring is found to be more probable compared to that at higher capture angles ( $$\theta _C \approx 90^\circ $$ ). Further, a lower capture angle ( $$\theta _C \approx 0^\circ $$ ) leads to a larger number of daughter bubbles $$N_b$$ and a slightly higher reduction in ring speed $$\Delta U^*$$ . In the second part, we study the effect of $$AR_0$$ by contrasting the elliptic ring ( $$AR_0 = 0.6$$ ) with a circular ring ( $$AR_0 = 1$$ ) over a range of Weber numbers, in which the parameters of interest are the ring’s speed and the number of daughter bubbles. We observe that the elliptic vortex ring produces fewer daughter bubbles than the circular ring, with the difference increasing at larger ring strengths corresponding to higher Weber numbers. At higher We, the elliptic ring deviates from the $$N_b \propto We^{0.42}$$ scaling, which holds for the circular ring. The current study thus helps to gain a better insight into the complex problem of bubbly turbulent flows.

Từ khóa


Tài liệu tham khảo

Elghobashi S 2019 Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech. 51: 217–244 Steven Ceccio L 2010 Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42: 183–203 Varghese Mathai, Detlef Lohse and Chao Sun 2020 Bubbly and buoyant particle-laden turbulent flows. Annu. Rev. Condens. Matt. Phys. 11: 529–559 Balachandar S and John Eaton K 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42: 111–133 Adrian R J, Meinhart C D and Tomkins C D 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422: 1–54 Kazuyasu Sugiyama, Enrico Calzavarini and Detlef Lohse 2008 Microbubbly drag reduction in taylor-couette flow in the wavy vortex regime. J. Fluid Mech. 608: 21–41 Sridhar G and Katz J 1999 Effect of entrained bubbles on the structure of vortex rings. J. Fluid Mech. 397: 171–202 Narsing Jha K and Raghuraman Govardhan N 2015 Interaction of a vortex ring with a single bubble: Bubble and vorticity dynamics. J. Fluid Mech. 773: 460–497 Subhajit Biswas and Raghuraman Govardhan N 2020 Effect of single and multiple bubbles on a thin vortex ring. J. Flow Visual. Image Process. 27: 1–27 Subhajit Biswas and Raghuraman Govardhan N 2023 Vortex ring and bubble interaction: effects of bubble size on vorticity dynamics and bubble dynamics. Phys. Fluids 35(083328): 1–23 Dhanak R M and de Bernardinis B 1981 The evolution of an elliptic vortex ring. J. Fluid Mech. 109: 189–216 Clara O’Farrell and John Dabiri O 2014 Pinch-off of non-axisymmetric vortex rings. J. Fluid Mech. 740: 61–96 Cheng M, Lou J and Lim T T 2016 Evolution of an elliptic vortex ring in a viscous fluid. Phys. Fluids 28: 037104 Fazle Hussain and Hyder Husain S 1989 Elliptic jets. Part 1. Characteristics of unexcited and excited jets. J. Fluid Mech. 208: 257–320 Subhajit Biswas and Raghuraman Govardhan N 2022 Interaction of a rigid buoyant sphere and a deforming bubble with a vortex ring: The role of deformability. Phys. Rev. Fluids 7: 094302 John Norbury 1973 A family of steady vortex rings. J. Fluid Mech. 57: 417–431 Revuelta Antonio 2010 On the interaction of a bubble and a vortex ring at high reynolds numbers. Eur. J. Mech.-B/Fluids 29: 119-126 Carlos Martínez-Bazán, Montañés L J and Juan Lasheras C 1999 On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid Mech. 401: 157–182 Magnaudet Jacques and Eames Ian 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32: 659–708