Interaction between Staphylococcus aureus and Pseudomonas aeruginosa is beneficial for colonisation and pathogenicity in a mixed biofilm

Pathogens and Disease - Tập 76 Số 1 - 2018
Patrícia Maria Alves1, Eida Al-Badi1, Cathryn Withycombe1, Paul Jones1, Kevin J. Purdy2, Sarah E. Maddocks1
1Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Llandaff, Cardiff, CF5 2YB, UK
2School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahlgren, 2015, Clinical outcomes associated with Staphylococcus aureus and Pseudomonas aeruginosa airway infections in adult cystic fibrosis patients, BMC Pulm Med, 15, 67, 10.1186/s12890-015-0062-7

Altoparlak, 2004, The time-related changes of antimicrobial resistance patterns and predominant bacterial profiles of burn wounds and body flora of burned patients, Burns, 30, 660, 10.1016/j.burns.2004.03.005

Armbruster, 2016, Staphylococcus aueus protein A mediated intrspecies interactions at the cell surface of Pseudomonas aeruginosa, MBio, 3, e00538

Baldan, 2014, Adaptation of Pseudomonas aeruginosa in cystic fibrosis airways influences virulence of Staphylococcus aureus in vitro and murine models of co-infection, PLoS One, 9, e89614, 10.1371/journal.pone.0089614

Barnabie, 2015, Iron-Mediated control of Pseudomonas aeruginosa-Staphylococcus aureus interactions in the cystic fibrosis lung, J Bacteriol, 197, 2250, 10.1128/JB.00303-15

Birkenhauer, 2014, Collagen and hyaluronan at wound sites influence early polymicrobial biofilm adhesive events, BMC Microbiol, 14, 191, 10.1186/1471-2180-14-191

Biyikoglu, 2012, Strain specific colonisation patterns and serum-modulation of multi-species oral biofilm development, Anaerobe, 18, 459, 10.1016/j.anaerobe.2012.06.003

Clarke, 2006, Surface adhesins of Staphylococcus aureus, Adv Microb Physiol, 51, 187, 10.1016/S0065-2911(06)51004-5

Dalton, 2011, An in vivo polymicrobial biofilm wound infection model to study interspecies interactions, PLoS One, 6, e27317, 10.1371/journal.pone.0027317

Davies, 2006, Evolutionary Ecology: when relatives cannot live together, Curr Biol, 16, R645, 10.1016/j.cub.2006.07.030

Dean, 2015, Analysis of mixed biofilm (Staphylococcus aureus and Pseudomonas aeruginosa) by laser ablation electrospray ionization mass spectrometry, Biofouling, 31, 151, 10.1080/08927014.2015.1011067

DeLeon, 2014, Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model, Infect Immun, 82, 4718, 10.1128/IAI.02198-14

Dohmen, 2008, Antibiotic resistance in common pathogens reinforces the need to minimise surgical site infections, J Hosp Infect, 70, 15, 10.1016/S0195-6701(08)60019-5

Fazli, 2009, Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds, J Clin Microbiol, 47, 4084, 10.1128/JCM.01395-09

Filkins, 2015, Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model, J Bacteriol, 197, 2252, 10.1128/JB.00059-15

Fugere, 2014, Interspecific small molecuae interactions between clinical isolates of Pseudomonas aeruginosa and Staphylococcus aureus from adult cystic fibrosis patients, PLoS One, 9, e86705, 10.1371/journal.pone.0086705

Gottrup, 2014, Antimicrobials and non-healing wounds. Evidence, controversies and suggestions-key messages, J Wound Care, 23, 477, 10.12968/jowc.2014.23.10.477

Guggenheim, 2011, Validation of the Zürich burn-biofilm model, Burns, 37, 1125, 10.1016/j.burns.2011.05.017

Hendricks, 2001, Synergy between Staphylococcus aureus and Pseudomonas aeruginosa in a rat model of complex orthopaedic wounds, J Bone Joint Surg Am, 83, 855, 10.2106/00004623-200106000-00006

Høiby, 2010, Antibiotic resistance of bacterial biofilms, Int J Antimicrob Ag, 35, 322, 10.1016/j.ijantimicag.2009.12.011

Høiby, 2015, ESCMID guideline for the diagnosis and treatment of biofilm infections 2014, Clin Microbiol Infect, 21, S1, 10.1016/j.cmi.2014.10.024

Hotterbeekx, 2017, In vitro and in vivo interactions between Pseudomonas aeruginosa and Staphylococcus spp, Front Cell Infect Microbiol, 10.3389/fcimb.2017.00106

Kolenbrander, 2010, Oral multispecies biofilm development and the key role or cell-cell distance, Nat Rev Microbiol, 8, 471, 10.1038/nrmicro2381

Kragh, 2016, Role of multicellular aggregates in biofilm formation, MBio, 22, e00237

Kumar, 2015, Presence of Pseudomonas aeruginosa influences biofilm formation and surface protein expression of Staphylococcus aureus, Environ Microbiol, 17, 4459, 10.1111/1462-2920.12890

Limoli, 2017, Pseudomonas aeruginosa alginate overproduction promotes coexistence with Staphylococcus aureus in a model of cystic fibrosis respiratory infection, MBio, 8, e00186, 10.1128/mBio.00186-17

Limoli, 2016, Staphylococcus aureus and Pseudomonas aeruginosa co-infection is associated with cystic fibrosis-related diabetes and poor clinical outcomes, Eur J Clin Microbiol, 35, 947, 10.1007/s10096-016-2621-0

Maliniak, 2016, A longitudinal analysis of chronic MRSA and Pseudomonas aeruginosa co-infection in cystic fibrosis: A single-center study, J Cyst Fibros, 15, 350, 10.1016/j.jcf.2015.10.014

Mashburn, 2005, Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture, J Bacteriol, 187, 554, 10.1128/JB.187.2.554-566.2005

Melaugh, 2016, Shaping the growth behaviour of biofilms initiated from bacterial aggregates, PLoS One, 11, e0149683, 10.1371/journal.pone.0149683

Metcalf, 2016, Clinician perceptions of wound biofilm, Int Wound J, 13, 717, 10.1111/iwj.12358

Miles, 1938, The estimation of the bactericidal power of the blood, J Hyg (Lond), 38, 732, 10.1017/S002217240001158X

Pastar, 2013, Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection, PLoS One, 8, e56846, 10.1371/journal.pone.0056846

Peters, 2012, Polymicrobial interaction: impact on pathogenesis and human disease, Clin Microbiol Rev, 25, 193, 10.1128/CMR.00013-11

Pihl, 2013, Biofilm formation by Staphylococcus epidermidis on peritoneal dialysis catheters and the effects of extracellular products from Pseudmonas aeruginosa, FEMS Path and Dis, 67, 192, 10.1111/2049-632X.12035

Pihl, 2010, Differential effects of Pseudomonas aeruginosa on biofilm formation by different strains of Staphylococcus epidermidis, FEMS Immunol Med Mic, 59, 439, 10.1111/j.1574-695X.2010.00697.x

Phalak, 2016, Metabolic modelling of a chronic wound biofilm consortium predicts spatial partitioning of bacterial species, BMS Syst Biol, 10, 90, 10.1186/s12918-016-0334-8

Prince, 1992, Adhesins and receptors of Pseudomonas aeruginosa associated with infection of the respiratory tract, Microb Pathog, 13, 251, 10.1016/0882-4010(92)90035-M

Rasigade, 2011, Impact of sub-inhibitory antibiotics on fibronectin-mediated host cell adhesion and invasion by Staphylococcus aureus, BMC Microbiol, 11, 263, 10.1186/1471-2180-11-263

Rhoads, 2008, Biofilms in wounds: management strategies, J Wound Care, 17, 502, 10.12968/jowc.2008.17.11.31479

Rickard, 2003, Bacterial co-aggregation: an integral process in the development of multi-species biofilms, Trends Microbiol, 11, 94, 10.1016/S0966-842X(02)00034-3

Serra, 2015, Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus, Expert Rev Anti Infect Ther, 13, 605, 10.1586/14787210.2015.1023291

Shah, 2016, Do polymicrobial intra-abdominal infections have worse outcomes that monomicrobial intra-abdominal infections?, Surg Infect, 17, 27, 10.1089/sur.2015.127

Tang, 2011, The staphylococcal nuclease prevents biofilm formation in Staphylococcus aureus and other biofilm-forming bacteria, Sci China Life Sci, 54, 863, 10.1007/s11427-011-4195-5

Tümmler, 2014, Advances in understanding Pseudomonas, F1000Prime Rep, 6, 9, 10.12703/P6-9

Wakeman, 2016, The innate immune protein caloprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction, Nat Commun, 7, 11951, 10.1038/ncomms11951

Williams, 1999, Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture, Microbiology, 145, 1325, 10.1099/13500872-145-6-1325

Williams, 1997, The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus, Microbiology, 143, 2407, 10.1099/00221287-143-7-2407

Woods, 2012, Development and application of a polymicrobial, in vitro, wound biofilm model, J Appl Microbiol, 112, 998, 10.1111/j.1365-2672.2012.05264.x

World Health Organisation, 2015, Global Action Plan on Antimicrobial Resistance

World Union of Wound Healing Societies, 2016, Position Document: Management of Biofilm

Yang, 2011, Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa, FEMS Immunol Med Mic, 62, 339, 10.1111/j.1574-695X.2011.00820.x