Interaction between Staphylococcus aureus and Pseudomonas aeruginosa is beneficial for colonisation and pathogenicity in a mixed biofilm
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahlgren, 2015, Clinical outcomes associated with Staphylococcus aureus and Pseudomonas aeruginosa airway infections in adult cystic fibrosis patients, BMC Pulm Med, 15, 67, 10.1186/s12890-015-0062-7
Altoparlak, 2004, The time-related changes of antimicrobial resistance patterns and predominant bacterial profiles of burn wounds and body flora of burned patients, Burns, 30, 660, 10.1016/j.burns.2004.03.005
Armbruster, 2016, Staphylococcus aueus protein A mediated intrspecies interactions at the cell surface of Pseudomonas aeruginosa, MBio, 3, e00538
Baldan, 2014, Adaptation of Pseudomonas aeruginosa in cystic fibrosis airways influences virulence of Staphylococcus aureus in vitro and murine models of co-infection, PLoS One, 9, e89614, 10.1371/journal.pone.0089614
Barnabie, 2015, Iron-Mediated control of Pseudomonas aeruginosa-Staphylococcus aureus interactions in the cystic fibrosis lung, J Bacteriol, 197, 2250, 10.1128/JB.00303-15
Birkenhauer, 2014, Collagen and hyaluronan at wound sites influence early polymicrobial biofilm adhesive events, BMC Microbiol, 14, 191, 10.1186/1471-2180-14-191
Biyikoglu, 2012, Strain specific colonisation patterns and serum-modulation of multi-species oral biofilm development, Anaerobe, 18, 459, 10.1016/j.anaerobe.2012.06.003
Clarke, 2006, Surface adhesins of Staphylococcus aureus, Adv Microb Physiol, 51, 187, 10.1016/S0065-2911(06)51004-5
Dalton, 2011, An in vivo polymicrobial biofilm wound infection model to study interspecies interactions, PLoS One, 6, e27317, 10.1371/journal.pone.0027317
Davies, 2006, Evolutionary Ecology: when relatives cannot live together, Curr Biol, 16, R645, 10.1016/j.cub.2006.07.030
Dean, 2015, Analysis of mixed biofilm (Staphylococcus aureus and Pseudomonas aeruginosa) by laser ablation electrospray ionization mass spectrometry, Biofouling, 31, 151, 10.1080/08927014.2015.1011067
DeLeon, 2014, Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model, Infect Immun, 82, 4718, 10.1128/IAI.02198-14
Dohmen, 2008, Antibiotic resistance in common pathogens reinforces the need to minimise surgical site infections, J Hosp Infect, 70, 15, 10.1016/S0195-6701(08)60019-5
Fazli, 2009, Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds, J Clin Microbiol, 47, 4084, 10.1128/JCM.01395-09
Filkins, 2015, Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model, J Bacteriol, 197, 2252, 10.1128/JB.00059-15
Fugere, 2014, Interspecific small molecuae interactions between clinical isolates of Pseudomonas aeruginosa and Staphylococcus aureus from adult cystic fibrosis patients, PLoS One, 9, e86705, 10.1371/journal.pone.0086705
Gottrup, 2014, Antimicrobials and non-healing wounds. Evidence, controversies and suggestions-key messages, J Wound Care, 23, 477, 10.12968/jowc.2014.23.10.477
Guggenheim, 2011, Validation of the Zürich burn-biofilm model, Burns, 37, 1125, 10.1016/j.burns.2011.05.017
Hendricks, 2001, Synergy between Staphylococcus aureus and Pseudomonas aeruginosa in a rat model of complex orthopaedic wounds, J Bone Joint Surg Am, 83, 855, 10.2106/00004623-200106000-00006
Høiby, 2010, Antibiotic resistance of bacterial biofilms, Int J Antimicrob Ag, 35, 322, 10.1016/j.ijantimicag.2009.12.011
Høiby, 2015, ESCMID guideline for the diagnosis and treatment of biofilm infections 2014, Clin Microbiol Infect, 21, S1, 10.1016/j.cmi.2014.10.024
Hotterbeekx, 2017, In vitro and in vivo interactions between Pseudomonas aeruginosa and Staphylococcus spp, Front Cell Infect Microbiol, 10.3389/fcimb.2017.00106
Kolenbrander, 2010, Oral multispecies biofilm development and the key role or cell-cell distance, Nat Rev Microbiol, 8, 471, 10.1038/nrmicro2381
Kragh, 2016, Role of multicellular aggregates in biofilm formation, MBio, 22, e00237
Kumar, 2015, Presence of Pseudomonas aeruginosa influences biofilm formation and surface protein expression of Staphylococcus aureus, Environ Microbiol, 17, 4459, 10.1111/1462-2920.12890
Limoli, 2017, Pseudomonas aeruginosa alginate overproduction promotes coexistence with Staphylococcus aureus in a model of cystic fibrosis respiratory infection, MBio, 8, e00186, 10.1128/mBio.00186-17
Limoli, 2016, Staphylococcus aureus and Pseudomonas aeruginosa co-infection is associated with cystic fibrosis-related diabetes and poor clinical outcomes, Eur J Clin Microbiol, 35, 947, 10.1007/s10096-016-2621-0
Maliniak, 2016, A longitudinal analysis of chronic MRSA and Pseudomonas aeruginosa co-infection in cystic fibrosis: A single-center study, J Cyst Fibros, 15, 350, 10.1016/j.jcf.2015.10.014
Mashburn, 2005, Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture, J Bacteriol, 187, 554, 10.1128/JB.187.2.554-566.2005
Melaugh, 2016, Shaping the growth behaviour of biofilms initiated from bacterial aggregates, PLoS One, 11, e0149683, 10.1371/journal.pone.0149683
Miles, 1938, The estimation of the bactericidal power of the blood, J Hyg (Lond), 38, 732, 10.1017/S002217240001158X
Pastar, 2013, Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection, PLoS One, 8, e56846, 10.1371/journal.pone.0056846
Peters, 2012, Polymicrobial interaction: impact on pathogenesis and human disease, Clin Microbiol Rev, 25, 193, 10.1128/CMR.00013-11
Pihl, 2013, Biofilm formation by Staphylococcus epidermidis on peritoneal dialysis catheters and the effects of extracellular products from Pseudmonas aeruginosa, FEMS Path and Dis, 67, 192, 10.1111/2049-632X.12035
Pihl, 2010, Differential effects of Pseudomonas aeruginosa on biofilm formation by different strains of Staphylococcus epidermidis, FEMS Immunol Med Mic, 59, 439, 10.1111/j.1574-695X.2010.00697.x
Phalak, 2016, Metabolic modelling of a chronic wound biofilm consortium predicts spatial partitioning of bacterial species, BMS Syst Biol, 10, 90, 10.1186/s12918-016-0334-8
Prince, 1992, Adhesins and receptors of Pseudomonas aeruginosa associated with infection of the respiratory tract, Microb Pathog, 13, 251, 10.1016/0882-4010(92)90035-M
Rasigade, 2011, Impact of sub-inhibitory antibiotics on fibronectin-mediated host cell adhesion and invasion by Staphylococcus aureus, BMC Microbiol, 11, 263, 10.1186/1471-2180-11-263
Rhoads, 2008, Biofilms in wounds: management strategies, J Wound Care, 17, 502, 10.12968/jowc.2008.17.11.31479
Rickard, 2003, Bacterial co-aggregation: an integral process in the development of multi-species biofilms, Trends Microbiol, 11, 94, 10.1016/S0966-842X(02)00034-3
Serra, 2015, Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus, Expert Rev Anti Infect Ther, 13, 605, 10.1586/14787210.2015.1023291
Shah, 2016, Do polymicrobial intra-abdominal infections have worse outcomes that monomicrobial intra-abdominal infections?, Surg Infect, 17, 27, 10.1089/sur.2015.127
Tang, 2011, The staphylococcal nuclease prevents biofilm formation in Staphylococcus aureus and other biofilm-forming bacteria, Sci China Life Sci, 54, 863, 10.1007/s11427-011-4195-5
Wakeman, 2016, The innate immune protein caloprotectin promotes Pseudomonas aeruginosa and Staphylococcus aureus interaction, Nat Commun, 7, 11951, 10.1038/ncomms11951
Williams, 1999, Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture, Microbiology, 145, 1325, 10.1099/13500872-145-6-1325
Williams, 1997, The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus, Microbiology, 143, 2407, 10.1099/00221287-143-7-2407
Woods, 2012, Development and application of a polymicrobial, in vitro, wound biofilm model, J Appl Microbiol, 112, 998, 10.1111/j.1365-2672.2012.05264.x
World Health Organisation, 2015, Global Action Plan on Antimicrobial Resistance
World Union of Wound Healing Societies, 2016, Position Document: Management of Biofilm