Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone

Ultrasonics Sonochemistry - Tập 62 - Trang 104852 - 2020
Regina M. González‐Balderas1, Sharon B. Velásquez-Orta2, Idania Valdez-Vázquez3, María Teresa Orta Ledesma1
1Instituto de Ingeniería, Coordinación de Ingeniería Ambiental, Universidad Nacional Autónoma de México UNAM, Circuito Escolar s/n, Ciudad Universitaria, Delegación Coyoacán, CDMX., C.P. 04510, Mexico
2School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
3Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lardon, 2009, Life-cycle assessment of biodiesel production from microalgae, Environ. Sci. Technol., 43, 6475, 10.1021/es900705j

Lam, 2018, Multi product microalgae biorefineries: From concept towards reality, Trends Biotechnol., 36, 216, 10.1016/j.tibtech.2017.10.011

Brennan, 2010, Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sustain. Ener. Rev., 14, 557, 10.1016/j.rser.2009.10.009

Günerken, 2015, Cell disruption for microalgae biorefineries, Biotechnol. Adv., 33, 243, 10.1016/j.biotechadv.2015.01.008

Charpentier, 2007, In the frame of globalization and sustainability, process intensification, a path to the future of chemical and process engineering (molecules into money), Chem. Eng. J., 134, 84, 10.1016/j.cej.2007.03.084

Vaghari, 2015, Process intensification for production and recovery of biological products, Am. J. Biochem. Biotechnol., 11, 37, 10.3844/ajbbsp.2015.37.43

Kochergin, 2006, Existing biorefinery operations that benefit from fractal-based process intensification, Appl. Biochem. Biotechnol., 130, 349, 10.1385/ABAB:130:1:349

Luo, 2014, Ultrasound-enhanced conversion of biomass to biofuels, Prog. Ener. Combust. Sci., 41, 56, 10.1016/j.pecs.2013.11.001

Leong, 2011, The fundamentals of power ultrasound – a review, Acoust. Aust., 39, 54

Pawar, 2018, Ultrasound assisted process intensification of uricase and alkaline protease enzyme co-production in Bacillus Licheniformis, Ultrason. Sonochem., 45, 173, 10.1016/j.ultsonch.2018.03.004

Miranda, 2012, Pre-treatment optimization of Scenedesmus obliquus microalgae for bioethanol production, Biores. Technol., 104, 342, 10.1016/j.biortech.2011.10.059

Natarajan, 2014, Lipid releasing characteristics of microalgae species through continuous ultrasonication, Biores. Technol., 158, 7, 10.1016/j.biortech.2014.01.146

Sivaramakrishnan, 2017, Direct transesterification of Botryococcus sp. catalyzed by immobilized lipase: ultrasound treatment can reduce reaction time with high yield of methyl ester, Fuel, 191, 363, 10.1016/j.fuel.2016.11.085

Yamamoto, 2015, Effect of ultrasound frequency and power disruption of algal cells, Ultrason. Sonochem., 24, 165, 10.1016/j.ultsonch.2014.11.002

Yao, 2018, The effect of high-intensity ultrasound on cell disruption and lipid extraction from high-solids viscous slurries of Nannochloropsis sp. biomass, Algal Res., 35, 341, 10.1016/j.algal.2018.09.004

Cheeseman, 1993, An introduction to free radical biochemistry, Br. Med. Bull., 49, 481, 10.1093/oxfordjournals.bmb.a072625

Cheng, 2010, Dispersed ozone flotation of Chlorella vulgaris, Biores. Technol., 101, 9092, 10.1016/j.biortech.2010.07.016

Velasquez-Orta, 2014, Microalgae harvesting using ozoflotation: effect on lipid and FAME recoveries, Biomass Bioener., 70, 356, 10.1016/j.biombioe.2014.08.022

Cardeña, 2017, Enhancement of methane production from various microalgae cultures via novel ozonation pretreatment, Chem. Eng. J., 307, 948, 10.1016/j.cej.2016.09.016

Keris-Sen, 2017, Using ozone for microalgal cell disruption to improve enzymatic saccharification of cellular carbohydrates, Biomass Bioener., 105, 59, 10.1016/j.biombioe.2017.06.023

Hernández-García, 2019, Wastewater-leachate treatment by microalgae: Biomass, carbohydrate and lipid production, Ecotoxicol. Envir. Safety, 174, 435, 10.1016/j.ecoenv.2019.02.052

Valeriano-González, 2016, Harvesting microalgae using ozonoflotation releases surfactant proteins, facilitates biomass recovery and lipid extraction, Biomass Bioener., 95, 109, 10.1016/j.biombioe.2016.09.020

Safi, 2014, Release of hydro-soluble microalgal proteins using mechanical and chemical treatments, Algal Res., 3, 55, 10.1016/j.algal.2013.11.017

Mirsiaghi, 2015, Conversion of lipid-extracted Nannochloropsis salina biomass into fermentable sugars, Algal Res., 8, 145, 10.1016/j.algal.2015.01.013

Birdsall, 1952, Iodometric determination of ozone, Anal. Chem., 24, 662, 10.1021/ac60064a013

Misha, 2014, Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method, Biores. Technol., 155, 330, 10.1016/j.biortech.2013.12.077

Uzun, 2012, Effects of ozone on functional properties of proteins, Food Chem., 134, 647, 10.1016/j.foodchem.2012.02.146

Dubois, 1956, Colorimetric method for determination of sugars and related substances, Anal. Chem., 28, 350, 10.1021/ac60111a017

Kaluzny, 1985, Rapid separation of lipid classes in high yield and purity using bonded phase columns, J. Lipid Res., 26, 135, 10.1016/S0022-2275(20)34412-6

Wahlen, 2011, Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures, Biores. Technol., 102, 2724, 10.1016/j.biortech.2010.11.026

Zhang, 2014, Ultrasonication assisted lipid extraction from oleaginous microorganisms, Biores. Technol., 158, 253, 10.1016/j.biortech.2014.01.132

Silveira, 2007, Optimization of phycocyanin extraction from Spirulina platensis using factorial design, Biores. Technol., 98, 1629, 10.1016/j.biortech.2006.05.050

Harnedy, 2011, Bioactive proteins, pepetides, and amino acids from macroalage, J. Phycol., 47, 218, 10.1111/j.1529-8817.2011.00969.x

Peacocke, 1968, The ultrasonic degradation of biological macromolecules under conditions of stable cavitation. II. Degradation of deoxyribonucleic acid, Biopolymers, 6, 605, 10.1002/bip.1968.360060414

Mzoughi, 2016, Ozone treatment of polysaccharides from Arthrocnemum indicum: physico-chemical characterization and antiproliferative activity, Int. J. Biol. Macromol., 199, 2

Guschina, 2006, Lipids and lipid metabolism in eukarotyc algae, Prog. Lipid Res., 45, 160, 10.1016/j.plipres.2006.01.001

I. Lang, New Fatty Acids, Oxylipins and Volatiles in microalgae. Georg-August-Universität zu Göttingen, (2007).

Sharma, 2012, High lipid induction in microalgae for biodiesel production, Energies, 5, 1532, 10.3390/en5051532

Sarkar, 2009, Plant cell walls throughout evolution: towards a molecular understanding of their design principles, J. Exp. Bot., 60, 3615, 10.1093/jxb/erp245

Travaini, 2016, Ozonolysis: an advantageous pretreatment for lignocellulosic biomass revisited, Biores. Technol., 199, 2, 10.1016/j.biortech.2015.08.143

Yamada, 1982, Comparative studies on Chlorella cell walls: induction of protoplast formation, Arch. Microbiol., 132, 10, 10.1007/BF00690809

Freeman, 1982, Biology of disease: free radicals and tissue injury, Lab. Invest., 47, 412

Yap, 2014, A mechanistic study of algal cell disruption and its effect on lipid recovery by solvent extraction, Algal Res., 5, 112, 10.1016/j.algal.2014.07.001

Bezerra, 2019, Simultaneous optimization of multiple responses and its application in Analytical Chemistry – a review, Talanta, 194, 941, 10.1016/j.talanta.2018.10.088

Khoo, 2015, Review of bio-conversion phatways of lignocellullose to ethanol: Sustainability assessment based on land footprint projections, Renew. Sustain. Ener. Rev., 46, 100, 10.1016/j.rser.2015.02.027

Sriram, 2015, Biophotonic perception on Desmodesmus sp. VIT growth, lipid and carbohydrate content, Biores. Technol., 198, 626, 10.1016/j.biortech.2015.09.065

Garoma, 2016, Investigation of the effects of microalgal cell concentration and electroporation, microwave and ultrasonication on lipid extraction efficiency, Renew. Ener., 86, 117, 10.1016/j.renene.2015.08.009

Herrera Adame, 2017, Methane and hydrogen production from anaerobic digestion of soluble fraction obtained by sugarcane bagasse ozonation, Ind. Crops Prod., 109, 288, 10.1016/j.indcrop.2017.08.040

Halim, 2013, Mechanical cell disruption for lipid extraction from microalgal biomass, Biores. Technol., 140, 53, 10.1016/j.biortech.2013.04.067

Martin, 2016, Energy requirements for wet solvents extraction of lipids from microalgal biomass, Biores. Technol., 205, 40, 10.1016/j.biortech.2016.01.017

Sharma, 2013, Critical analysis of current microalgae dewatering techniques, Biofuels, 4, 397, 10.4155/bfs.13.25