Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone
Tóm tắt
Từ khóa
Tài liệu tham khảo
Lardon, 2009, Life-cycle assessment of biodiesel production from microalgae, Environ. Sci. Technol., 43, 6475, 10.1021/es900705j
Lam, 2018, Multi product microalgae biorefineries: From concept towards reality, Trends Biotechnol., 36, 216, 10.1016/j.tibtech.2017.10.011
Brennan, 2010, Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sustain. Ener. Rev., 14, 557, 10.1016/j.rser.2009.10.009
Günerken, 2015, Cell disruption for microalgae biorefineries, Biotechnol. Adv., 33, 243, 10.1016/j.biotechadv.2015.01.008
Charpentier, 2007, In the frame of globalization and sustainability, process intensification, a path to the future of chemical and process engineering (molecules into money), Chem. Eng. J., 134, 84, 10.1016/j.cej.2007.03.084
Vaghari, 2015, Process intensification for production and recovery of biological products, Am. J. Biochem. Biotechnol., 11, 37, 10.3844/ajbbsp.2015.37.43
Kochergin, 2006, Existing biorefinery operations that benefit from fractal-based process intensification, Appl. Biochem. Biotechnol., 130, 349, 10.1385/ABAB:130:1:349
Luo, 2014, Ultrasound-enhanced conversion of biomass to biofuels, Prog. Ener. Combust. Sci., 41, 56, 10.1016/j.pecs.2013.11.001
Leong, 2011, The fundamentals of power ultrasound – a review, Acoust. Aust., 39, 54
Pawar, 2018, Ultrasound assisted process intensification of uricase and alkaline protease enzyme co-production in Bacillus Licheniformis, Ultrason. Sonochem., 45, 173, 10.1016/j.ultsonch.2018.03.004
Miranda, 2012, Pre-treatment optimization of Scenedesmus obliquus microalgae for bioethanol production, Biores. Technol., 104, 342, 10.1016/j.biortech.2011.10.059
Natarajan, 2014, Lipid releasing characteristics of microalgae species through continuous ultrasonication, Biores. Technol., 158, 7, 10.1016/j.biortech.2014.01.146
Sivaramakrishnan, 2017, Direct transesterification of Botryococcus sp. catalyzed by immobilized lipase: ultrasound treatment can reduce reaction time with high yield of methyl ester, Fuel, 191, 363, 10.1016/j.fuel.2016.11.085
Yamamoto, 2015, Effect of ultrasound frequency and power disruption of algal cells, Ultrason. Sonochem., 24, 165, 10.1016/j.ultsonch.2014.11.002
Yao, 2018, The effect of high-intensity ultrasound on cell disruption and lipid extraction from high-solids viscous slurries of Nannochloropsis sp. biomass, Algal Res., 35, 341, 10.1016/j.algal.2018.09.004
Cheeseman, 1993, An introduction to free radical biochemistry, Br. Med. Bull., 49, 481, 10.1093/oxfordjournals.bmb.a072625
Cheng, 2010, Dispersed ozone flotation of Chlorella vulgaris, Biores. Technol., 101, 9092, 10.1016/j.biortech.2010.07.016
Velasquez-Orta, 2014, Microalgae harvesting using ozoflotation: effect on lipid and FAME recoveries, Biomass Bioener., 70, 356, 10.1016/j.biombioe.2014.08.022
Cardeña, 2017, Enhancement of methane production from various microalgae cultures via novel ozonation pretreatment, Chem. Eng. J., 307, 948, 10.1016/j.cej.2016.09.016
Keris-Sen, 2017, Using ozone for microalgal cell disruption to improve enzymatic saccharification of cellular carbohydrates, Biomass Bioener., 105, 59, 10.1016/j.biombioe.2017.06.023
Hernández-García, 2019, Wastewater-leachate treatment by microalgae: Biomass, carbohydrate and lipid production, Ecotoxicol. Envir. Safety, 174, 435, 10.1016/j.ecoenv.2019.02.052
Valeriano-González, 2016, Harvesting microalgae using ozonoflotation releases surfactant proteins, facilitates biomass recovery and lipid extraction, Biomass Bioener., 95, 109, 10.1016/j.biombioe.2016.09.020
Safi, 2014, Release of hydro-soluble microalgal proteins using mechanical and chemical treatments, Algal Res., 3, 55, 10.1016/j.algal.2013.11.017
Mirsiaghi, 2015, Conversion of lipid-extracted Nannochloropsis salina biomass into fermentable sugars, Algal Res., 8, 145, 10.1016/j.algal.2015.01.013
Misha, 2014, Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method, Biores. Technol., 155, 330, 10.1016/j.biortech.2013.12.077
Uzun, 2012, Effects of ozone on functional properties of proteins, Food Chem., 134, 647, 10.1016/j.foodchem.2012.02.146
Dubois, 1956, Colorimetric method for determination of sugars and related substances, Anal. Chem., 28, 350, 10.1021/ac60111a017
Kaluzny, 1985, Rapid separation of lipid classes in high yield and purity using bonded phase columns, J. Lipid Res., 26, 135, 10.1016/S0022-2275(20)34412-6
Wahlen, 2011, Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures, Biores. Technol., 102, 2724, 10.1016/j.biortech.2010.11.026
Zhang, 2014, Ultrasonication assisted lipid extraction from oleaginous microorganisms, Biores. Technol., 158, 253, 10.1016/j.biortech.2014.01.132
Silveira, 2007, Optimization of phycocyanin extraction from Spirulina platensis using factorial design, Biores. Technol., 98, 1629, 10.1016/j.biortech.2006.05.050
Harnedy, 2011, Bioactive proteins, pepetides, and amino acids from macroalage, J. Phycol., 47, 218, 10.1111/j.1529-8817.2011.00969.x
Peacocke, 1968, The ultrasonic degradation of biological macromolecules under conditions of stable cavitation. II. Degradation of deoxyribonucleic acid, Biopolymers, 6, 605, 10.1002/bip.1968.360060414
Mzoughi, 2016, Ozone treatment of polysaccharides from Arthrocnemum indicum: physico-chemical characterization and antiproliferative activity, Int. J. Biol. Macromol., 199, 2
Guschina, 2006, Lipids and lipid metabolism in eukarotyc algae, Prog. Lipid Res., 45, 160, 10.1016/j.plipres.2006.01.001
I. Lang, New Fatty Acids, Oxylipins and Volatiles in microalgae. Georg-August-Universität zu Göttingen, (2007).
Sharma, 2012, High lipid induction in microalgae for biodiesel production, Energies, 5, 1532, 10.3390/en5051532
Sarkar, 2009, Plant cell walls throughout evolution: towards a molecular understanding of their design principles, J. Exp. Bot., 60, 3615, 10.1093/jxb/erp245
Travaini, 2016, Ozonolysis: an advantageous pretreatment for lignocellulosic biomass revisited, Biores. Technol., 199, 2, 10.1016/j.biortech.2015.08.143
Yamada, 1982, Comparative studies on Chlorella cell walls: induction of protoplast formation, Arch. Microbiol., 132, 10, 10.1007/BF00690809
Freeman, 1982, Biology of disease: free radicals and tissue injury, Lab. Invest., 47, 412
Yap, 2014, A mechanistic study of algal cell disruption and its effect on lipid recovery by solvent extraction, Algal Res., 5, 112, 10.1016/j.algal.2014.07.001
Bezerra, 2019, Simultaneous optimization of multiple responses and its application in Analytical Chemistry – a review, Talanta, 194, 941, 10.1016/j.talanta.2018.10.088
Khoo, 2015, Review of bio-conversion phatways of lignocellullose to ethanol: Sustainability assessment based on land footprint projections, Renew. Sustain. Ener. Rev., 46, 100, 10.1016/j.rser.2015.02.027
Sriram, 2015, Biophotonic perception on Desmodesmus sp. VIT growth, lipid and carbohydrate content, Biores. Technol., 198, 626, 10.1016/j.biortech.2015.09.065
Garoma, 2016, Investigation of the effects of microalgal cell concentration and electroporation, microwave and ultrasonication on lipid extraction efficiency, Renew. Ener., 86, 117, 10.1016/j.renene.2015.08.009
Herrera Adame, 2017, Methane and hydrogen production from anaerobic digestion of soluble fraction obtained by sugarcane bagasse ozonation, Ind. Crops Prod., 109, 288, 10.1016/j.indcrop.2017.08.040
Halim, 2013, Mechanical cell disruption for lipid extraction from microalgal biomass, Biores. Technol., 140, 53, 10.1016/j.biortech.2013.04.067
Martin, 2016, Energy requirements for wet solvents extraction of lipids from microalgal biomass, Biores. Technol., 205, 40, 10.1016/j.biortech.2016.01.017