Intelligent reflecting surface enhanced indoor terahertz communication systems
Tài liệu tham khảo
Chen, 2019, A survey on terahertz communications, China Commun., 16, 1, 10.23919/JCC.2019.09.001
Akyildiz, 2014, TeraNets: ultra-broadband communication networks in the terahertz band, IEEE Commun. Mag., 21, 130
Federici, 2010, Review of terahertz and subterahertz wireless communications, J. Appl. Phys., 107, 10.1063/1.3386413
Liaskos, 2019, A novel communication paradigm for high capacity and security via programmable indoor wireless environments in next generation wireless systems, Ad Hoc Netw., 87, 1, 10.1016/j.adhoc.2018.11.001
Akyildiz, 2018, Combating the distance problem in the millimeter wave and terahertz frequency bands, IEEE Commun. Mag., 56, 102, 10.1109/MCOM.2018.1700928
Hum, 2007, Modeling and design of electronically tunable reflect arrays, IEEE Trans. Antennas and Propagation, 55, 2200, 10.1109/TAP.2007.902002
C. Huang, A. Zappone, M. Debbah, et al. Achievable rate maximization by passive intelligent mirrors,in: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2018, pp. 3714–3718.
Huang, 2019, Reconfigurable intelligent surfaces for energy efficiency in wireless communication, IEEE Trans. Wireless Commun., 18, 4157, 10.1109/TWC.2019.2922609
Huang, 2018
Wu, 2018
Minovich, 2015, Functional and nonlinear optical metasurfaces: optical metasurfaces, Laser Photonics Rev., 9, 195, 10.1002/lpor.201400402
Guo, 2019
Wu, 2019
Zhu, 2013, Active impedance metasurface with full 360 reflection phase tuning, Sci. Rep., 3
Yu, 2011, Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science, 334, 333, 10.1126/science.1210713
Aieta, 2012, Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces, Nano Lett., 12, 4932, 10.1021/nl302516v
Neto, 2007, The electronic properties of graphene, Phys. Status Solidi, 244, 4106, 10.1002/pssb.200776208
Falkovsky, 2007, Optical far-infrared properties of a graphene monolayer and multilayer, Phys. Rev. B, 76, 10.1103/PhysRevB.76.153410
Novoselov, 2012, A roadmap for graphene, Nature, 490, 192, 10.1038/nature11458
Efetov, 2010, Controlling electron-phonon interactions in graphene at ultrahigh carrier densities, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.256805
Lee, 2012, Switching terahertz waves with gate-controlled active graphene metamaterials, Nature Mater., 11, 936, 10.1038/nmat3433
Pors, 2013, Gap plasmon-based metasurfaces for total control of reflected light, Sci. Rep., 3
Vakil, 2011, Transformation optics using graphene, Science, 332, 1291, 10.1126/science.1202691
Han, 2015, Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band, IEEE Trans. Wireless Commun., 14, 2402, 10.1109/TWC.2014.2386335
Han, 2018, Propagation modeling for wireless communications in the terahertz band, IEEE Commun. Mag., 56, 96, 10.1109/MCOM.2018.1700898
Jornet, 2011, Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band, IEEE Trans. Wireless Commun., 10, 3211, 10.1109/TWC.2011.081011.100545
Subrt, 2012, Intelligent walls as autonomous parts of smart indoor environments, IET Commun., 6, 1004, 10.1049/iet-com.2010.0544
Glassner, 1989
Yang, 1998, A ray-tracing method for modeling indoor wave propagation and penetration, IEEE Trans. Antennas and Propagation, 46, 907, 10.1109/8.686780
He, 2019, The design and applications of high-performance ray-tracing simulation platform for 5g and beyond wireless communications: A tutorial, IEEE Commun. Surv. Tutor., 21, 10, 10.1109/COMST.2018.2865724