Intelligent reflecting surface enhanced indoor terahertz communication systems

Nano Communication Networks - Tập 24 - Trang 100284 - 2020
Xinying Ma1, Zhi Chen1, Wenjie Chen1, Yaojia Chi1, Zhuoxun Li1, Chong Han2, Qiye Wen1
1University of Electronic Science and Technology of China, Chengdu 611731, China
2Shanghai Jiao Tong University, Shanghai 200240, China

Tài liệu tham khảo

Chen, 2019, A survey on terahertz communications, China Commun., 16, 1, 10.23919/JCC.2019.09.001 Akyildiz, 2014, TeraNets: ultra-broadband communication networks in the terahertz band, IEEE Commun. Mag., 21, 130 Federici, 2010, Review of terahertz and subterahertz wireless communications, J. Appl. Phys., 107, 10.1063/1.3386413 Liaskos, 2019, A novel communication paradigm for high capacity and security via programmable indoor wireless environments in next generation wireless systems, Ad Hoc Netw., 87, 1, 10.1016/j.adhoc.2018.11.001 Akyildiz, 2018, Combating the distance problem in the millimeter wave and terahertz frequency bands, IEEE Commun. Mag., 56, 102, 10.1109/MCOM.2018.1700928 Hum, 2007, Modeling and design of electronically tunable reflect arrays, IEEE Trans. Antennas and Propagation, 55, 2200, 10.1109/TAP.2007.902002 C. Huang, A. Zappone, M. Debbah, et al. Achievable rate maximization by passive intelligent mirrors,in: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2018, pp. 3714–3718. Huang, 2019, Reconfigurable intelligent surfaces for energy efficiency in wireless communication, IEEE Trans. Wireless Commun., 18, 4157, 10.1109/TWC.2019.2922609 Huang, 2018 Wu, 2018 Minovich, 2015, Functional and nonlinear optical metasurfaces: optical metasurfaces, Laser Photonics Rev., 9, 195, 10.1002/lpor.201400402 Guo, 2019 Wu, 2019 Zhu, 2013, Active impedance metasurface with full 360 reflection phase tuning, Sci. Rep., 3 Yu, 2011, Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science, 334, 333, 10.1126/science.1210713 Aieta, 2012, Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces, Nano Lett., 12, 4932, 10.1021/nl302516v Neto, 2007, The electronic properties of graphene, Phys. Status Solidi, 244, 4106, 10.1002/pssb.200776208 Falkovsky, 2007, Optical far-infrared properties of a graphene monolayer and multilayer, Phys. Rev. B, 76, 10.1103/PhysRevB.76.153410 Novoselov, 2012, A roadmap for graphene, Nature, 490, 192, 10.1038/nature11458 Efetov, 2010, Controlling electron-phonon interactions in graphene at ultrahigh carrier densities, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.256805 Lee, 2012, Switching terahertz waves with gate-controlled active graphene metamaterials, Nature Mater., 11, 936, 10.1038/nmat3433 Pors, 2013, Gap plasmon-based metasurfaces for total control of reflected light, Sci. Rep., 3 Vakil, 2011, Transformation optics using graphene, Science, 332, 1291, 10.1126/science.1202691 Han, 2015, Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band, IEEE Trans. Wireless Commun., 14, 2402, 10.1109/TWC.2014.2386335 Han, 2018, Propagation modeling for wireless communications in the terahertz band, IEEE Commun. Mag., 56, 96, 10.1109/MCOM.2018.1700898 Jornet, 2011, Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band, IEEE Trans. Wireless Commun., 10, 3211, 10.1109/TWC.2011.081011.100545 Subrt, 2012, Intelligent walls as autonomous parts of smart indoor environments, IET Commun., 6, 1004, 10.1049/iet-com.2010.0544 Glassner, 1989 Yang, 1998, A ray-tracing method for modeling indoor wave propagation and penetration, IEEE Trans. Antennas and Propagation, 46, 907, 10.1109/8.686780 He, 2019, The design and applications of high-performance ray-tracing simulation platform for 5g and beyond wireless communications: A tutorial, IEEE Commun. Surv. Tutor., 21, 10, 10.1109/COMST.2018.2865724