Intelligent process supervision for predicting tool wear in machining processes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Haber, 2001, Model of the milling process on the basis of cutting force: a neural network approach, 378
Haber, 1996, Fuzzy supervisory control of end milling process, Inf. Sci., 89, 95, 10.1016/0020-0255(95)00222-7
Du, 1992, Tool condition monitoring in turning using fuzzy sets theory, Int. J. Machine Tools Manuf., 32, 781, 10.1016/0890-6955(92)90031-B
Hekman, 1999, Feedrate optimization and depth of cut control for productivity and part parallelism in grinding, Mechatronics, 9, 447, 10.1016/S0957-4158(98)00054-3
Rober, 1997, A digital robust controller for cutting force control in the end milling process, J. Dyn. Syst., Meas. Control, 119, 146, 10.1115/1.2801226
Clenaghan McK, Kelly K, Byrne G. Tool condition monitoring––a new algorithm for breakage detection. In: Proceedings of 2nd. International Workshop on Intelligent Manufacturing Systems, Leuven, Belgium, 1999, p. 825–33
Haykin, 1999
Das, 1996, Force parameters for on- line tool wear estimation––a neural network approach, Neural Networks, 9, 1639, 10.1016/S0893-6080(96)00036-6
Purushothaman, 1994, A back-propagation algorithm applied to tool wear monitoring, Int. J. Machine Tools Manuf., 34, 625, 10.1016/0890-6955(94)90047-7
Dimla, 1997, Neural network solutions to the tool condition monitoring problem in metal cutting––a critical review of methods, Int. J. Machine Tools Manuf., 37, 1219, 10.1016/S0890-6955(97)00020-5
Narendra, 1990, Identification and control of dynamical systems using neural network, IEEE Trans. Neural Networks, 1, 4, 10.1109/72.80202
Ljung, 1999
Fletcher, 2000
Dennis, 1983
Lee, 1999, Milling cutter breakage detection by the discrete wavelet transform, Mechatronics, 9, 225, 10.1016/S0957-4158(98)00049-X
Patton, 1989
Isermann, 1984, Process fault detection based modelling and estimation methods––a survey, Automatica, 20, 387, 10.1016/0005-1098(84)90098-0
Tzafestas, 1990, Modern approaches to system sensor fault detection and diagnosis, Journal A, 31, 42
Willsky, 1976, A survey of design methods for failure detection in dynamic systems, Automatica, 12, 601, 10.1016/0005-1098(76)90041-8
Duda, 2001
Albus, 1991, Outline for a theory of intelligence, IEEE Trans. Syst. Man Cyber., 21, 473, 10.1109/21.97471
King, 1985
Sick, 1998, On-line tool wear monitoring in turning using neural networks, Neural Comput. Appl., 7, 356, 10.1007/BF01428126
Byrne, 1995, Tool condition monitoring (TCM)––the status of research and industrial application, Ann. CIRP, 44, 541, 10.1016/S0007-8506(07)60503-4
Tlusty, 1975, Dynamics of cutting forces in the end milling, Ann. CIRP, 24, 21
Altintas, 1992, Prediction of cutting forces and tool breakage in milling from feed drive current measurements, ASME J. Eng. Ind., 11, 386, 10.1115/1.2900688
Kim, 1996, Adaptive cutting force control for a machining centre by using indirect cutting force measurements, Int. J. Machine Tools Manuf., 36, 925, 10.1016/0890-6955(96)00097-1
Haber RE, Haber RH, Alique A, Ros S, Alique JR. Dynamic model of the machining process on the basis of neural networks from simulation to real time application. Lecture Notes in Computer Science 2002;2331:574–83
Sohlberg, 1997
Lauderbaugh, 1989, Model reference adaptive force control in milling, ASME J. Eng. Ind., 111, 13, 10.1115/1.3188726
Rober, 1996, Control of cutting force for milling processes using an extended model reference adaptive control scheme, J. Manuf. Sci. Eng., 118, 339, 10.1115/1.2831035
Haber, 1998, Towards intelligent machining: hierarchical fuzzy control for end milling process, IEEE Trans. Control Syst. Technol., 2, 188, 10.1109/87.664186
Bendat, 2000
Hassibi, 1994, Optimal brain surgeon: extensions, streamlining and performance comparisons, Adv. Neural Inf. Process. Syst., 6, 263