Intelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networks
Tóm tắt
This study deals with the neuro-fuzzy (NF) modelling of a real industrial winding process in which the acquired NF model can be exploited to improve control performance and achieve a robust fault-tolerant system. A new simulator model is proposed for a winding process using non-linear identification based on a recurrent local linear neuro-fuzzy (RLLNF) network trained by local linear model tree (LOLIMOT), which is an incremental tree-based learning algorithm. The proposed NF models are compared with other known intelligent identifiers, namely multilayer perceptron (MLP) and radial basis function (RBF). Comparison of our proposed non-linear models and associated models obtained through the least square error (LSE) technique (the optimal modelling method for linear systems) confirms that the winding process is a non-linear system. Experimental results show the effectiveness of our proposed NF modelling approach.
Tài liệu tham khảo
Babuska, R., Verbruggen, H., 2003. Neuro-fuzzy methods for nonlinear system identification. Ann. Rev. Control, 27(1): 73–85. [doi:10.1016/S1367-5788(03)00009-9]
Banadaki, H.D., Nozari, H.A., Kakahaji, H., 2011. Nonlinear simulator model identification of a walking beam furnace using recurrent local linear neuro-fuzzy network. Int. J. Control Autom., 4(4):123–134.
Bastogne, T., Noura, H., Sibille, P., Richard, A., 1998. Multivariable identification of a winding process by subspace methods for tension control. Control Eng. Pract., 6(9): 1077–1088.
Braatz, R.D., Ogunnaike, B.A., Featherstone, A.P., 1996. Identification, Estimation and Control of Sheet and Film Processes. 13th IFAC World Congress, p.319–324.
Ebler, N.A., Arnason, R., Michaelis, G., D’sa, N., 1993. Tension control: dancer rolls or load cells. IEEE Trans. Ind. Appl., 29(4):727–739. [doi:10.1109/28.231986]
Hoshino, I., Maekawa, Y., Fujimoto, T., Kimura, H., Kimura, H., 1988. Observer-based multivariable control of the aluminum cold tandem mill. Automatica, 24(6):741–754. [doi:10.1016/0005-1098(88)90050-7]
Hussein, E.L., Sheta, A., El Wahab, A.A., 2001. Modeling of a Winding Machine Using Non-parametric Neural Networks. WSEAS Int. Conf. on Scientific Computation and Soft Computing, p.528–533.
Hussian, A., Sheta, A., Kamel, M., Telbaney, M., Abdelwahab, A., 2000. Modeling of a Winding Machine Using Genetic Programming. Proc. Congress on Evolutionary Computation, p.398–402.
Ljung, L., 1987. System Identification Theory for the User. Prentice Hall, Upper Saddle River, NJ.
Nelles, O., 1996. Local Linear Model Tree for On-line Identification of Time Variant Non-linear Dynamic Systems. Int. Conf. on Artificial Neural Networks, p.115–120.
Nelles, O., 2001. Nonlinear System Identification. Springer Verlag, Berlin.
Nelles, O., Isermann, R., 1996. Basis Function Networks for Interpolation of Local Linear Models. IEEE Conf. on Decision and Control, p.470–475.
Noura, H., Theilliol, D., Ponsart, J.C., Chamseddine, A., 2009. Fault-Tolerant Control Systems: Design and Practical Applications. Springer-Verlag London Limited.
Parant, F., Iung, C., Bello, P., 1989. Traction and Speed Control. Third E.P.E. Conf., p.1417–1419.
Parant, F., Coeffier, C., Iung, C., 1992. Modeling of web tension in a continuous annealing line. Iron Steel Eng., p.46–49.
Razavi-Far, R., Davilu, H., Palade, V., Lucas, C., 2009. Model-based fault detection and isolation of a steam generator using neuro-fuzzy networks. Neurocomputing, 7(13–15):2939–2951. [doi:10.1016/j.neucom.2009.04.004]
Sadeghian, M., Fatehi, A., 2011. Identification, prediction and detection of the process fault in a cement rotary kiln by locally linear neuro-fuzzy technique. J. Process Control, 21(2):302–308. [doi:10.1016/j.jprocont.2010.10.009]
Sievers, L., Balas, M.J., von Flotow, A., 1988. Modeling of web conveyance systems for multivariable control. IEEE Trans. Autom. Control, 33(6):524–531. [doi:10.1109/9.1247]
SISTA, 1999. DaISy: Database for the Identification of Systems. Available from http://homes.esat.kuleuven.be/~smc/daisy/ [Accessed on Mar. 24, 2011].