Intelligent framework for radio access network design

Wireless Networks - Tập 26 - Trang 759-774 - 2019
Taras Maksymyuk1, Eugen Šlapak2, Gabriel Bugár2, Denis Horváth3, Juraj Gazda2
1Department of Telecommunications, Lviv Polytechnic National University, Lviv, Ukraine
2Department of Computers and Informatics, Technical University of Košice, Kosice, Slovakia
3Center of Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Kosice, Slovakia

Tóm tắt

The evolution of 5G networks over the last few years has introduced a variety of technologies for more efficient radio access networks (RANs), which end up in ultra-dense heterogeneous infrastructure with deployments of high complexity. In this paper, we propose a new framework for RAN design in ultra-dense urban scenario based on the machine learning. The key idea of the proposed framework is to bring intelligent capabilities to the coverage planning problem for complex multi-tier scenarios, in order to achieve better network performance. We design our framework for small cells coverage optimization with 3D urban environment, macro cell locations, and realistic traffic statistics. Simulation results show that our proposed intelligent RAN framework significantly outperforms the conventional coverage design solutions, even after only a short learning time.

Tài liệu tham khảo

Hwang, I., Song, B., & Soliman, S. S. (2013). A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Communications Magazine, 51(6), 20–27. Collet, P., & Rennard, J.-P. (2008). Stochastic optimization algorithms. In: Intelligent information technologies: Concepts, methodologies, tools, and applications (pp. 1121–1137). IGI Global. O’Leary, D. E. (2013). Artificial intelligence and big data. IEEE Intelligent Systems, 28(2), 96–99. Moysen, J., & Giupponi, L. (2018). From 4G to 5G: Self-organized network management meets machine learning. Computer Communications, 129, 248–268. Moysen, J., Giupponi, L., & Mangues-Bafalluy, J. (2016). On the potential of ensemble regression techniques for future mobile network planning. In IEEE Symposium on Computers and Communication (ISCC) (pp. 477–483). IEEE. Popoola, S. I., Adetiba, E., Atayero, A. A., Faruk, N., & Calafate, C. T. (2018). Optimal model for path loss predictions using feed-forward neural networks. Cogent Engineering, 5(1), 1444345. Kibria, M. G., Nguyen, K., Villardi, G. P., Zhao, O., Ishizu, K., & Kojima, F. (2018). Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks. IEEE Access, 6, 32 328–32 338. Wang, X., Li, X., & Leung, V. C. (2015). Artificial intelligence-based techniques for emerging heterogeneous network: State of the arts, opportunities, and challenges. IEEE Access, 3, 1379–1391. Gazda, J., Šlapak, E., Bugár, G., Horváth, D., Maksymyuk, T., & Jo, M. (2018). Unsupervised learning algorithm for intelligent coverage planning and performance optimization of multitier heterogeneous network. IEEE Access, 6, 39 807–39 819. Gutierrez-Estevez, D. M., Gramaglia, M., De Domenico, A., Dandachi, G., Khatibi, S., Tsolkas, D., et al. (2019). Artificial intelligence for elastic management and orchestration of 5G networks. IEEE Wireless Communications, 26(5),134–141. Wang, D., Song, B., Chen, D., & Du, X. (2019). Intelligent cognitive radio in 5G: AI-based hierarchical cognitive cellular networks. IEEE Wireless Communications, 26(3), 54–61. Zhang, H., Ren, Y., Chen, K.-C., Hanzo, L., et al. (2019). Thirty years of machine learning: The road to pareto-optimal next-generation wireless networks. arXiv preprint arXiv:1902.01946. Maksymyuk, T., Dumych, S., Brych, M., Satria, D., & Jo, M. (2017). An IoT based monitoring framework for software defined 5G mobile networks. In Proceedings of the 11th international conference on ubiquitous information management and communication (p. 105). ACM. Heath, R. W., Kountouris, M., & Bai, T. (2013). Modeling heterogeneous network interference using Poisson point processes. IEEE Transactions on Signal Processing, 61(16), 4114–4126. Peng, K., Leung, V. C., & Huang, Q. (2018). Clustering approach based on mini batch K-means for intrusion detection system over big data. IEEE Access, 6, 11 897–11 906. Kriegel, H.-P., Schubert, E., & Zimek, A. (2017). The (black) art of runtime evaluation: Are we comparing algorithms or implementations? Knowledge and Information Systems, 52(2), 341–378. Sculley, D. (2010). Web-scale K-means clustering. In Proceedings of the 19th international conference on World wide web (pp. 1177–1178). ACM. Feizollah, A., Anuar, N. B., Salleh, R., & Amalina, F. (2014). Comparative study of K-means and mini batch K-means clustering algorithms in Android malware detection using network traffic analysis. In International Symposium on Biometrics and Security Technologies (ISBAST) (pp. 193–197). IEEE. Dhillon, H. S., Ganti, R. K., & Andrews, J. G. (2011). A tractable framework for coverage and outage in heterogeneous cellular networks. In Information Theory and Applications Workshop (pp. 1–6). IEEE. Alouini, M.-S., & Goldsmith, A. J. (1999). Area spectral efficiency of cellular mobile radio systems. IEEE Transactions on Vehicular Technology, 48(4), 1047–1066. Jain, R., Durresi, A., & Babic, G. (1999). Throughput fairness index: An explanation. 3GPP, “Small cell enhancements for E-UTRA and E-UTRAN—Physical layer aspects,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 36.872, 12 2013, version 12.1.0. http://www.3gpp.org/-DynaReport/-36872.htm. Mingoti, S. A., & Lima, J. O. (2006). Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms. European Journal of Operational Research, 174(3), 1742–1759. Sofi, I. B., & Gupta, A. (2018). A survey on energy efficient 5G green network with a planned multi-tier architecture. Journal of Network and Computer Applications, 118, 1–28. Bhushan, N., Li, J., Malladi, D., Gilmore, R., Brenner, D., Damnjanovic, A., et al. (2014). Network densification: The dominant theme for wireless evolution into 5G. IEEE Communications Magazine, 52(2), 82–89. Zhang, H., Chu, X., Guo, W., & Wang, S. (2015). Coexistence of Wi-Fi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Communications Magazine, 53(3), 158–164. Maksymyuk, T., Kyryk, M., & Jo, M. (2016). Comprehensive spectrum management for heterogeneous networks in LTE-U. IEEE Wireless Communications, 23(6), 8–15. Araújo, D. C., Maksymyuk, T., de Almeida, A. L., Maciel, T., Mota, J. C., & Jo, M. (2016). Massive MIMO: Survey and future research topics. IET Communications, 10(15), 1938–1946.