Intelligent automation of dental material analysis using robotic arm with Jerk optimized trajectory
Tóm tắt
Many types of biomaterial analysis require numerous repetition of the same operations. We suggest applying the principles of Total Laboratory Automation (TLA) for analysis of dental tissues in in-vitro conditions. We propose an innovative robotic platform with ABB high precision industrial robotic arm. We programmed the robot to achieve 3000 cycles of submerging for analysis of the stability and thermal wear of dental adhesive materials. We address the problem of robot trajectory planning to achieve smooth and precise trajectory while minimizing jerk. We generate different variants of trajectory using natural cubic splines and adopt the NSGA II multiobjective evolutionary algorithm to find a Pareto-optimal set of robot arm trajectories. The results demonstrate the applicability of the developed robotic platform for in-vitro experiments with dental materials. The platform is suitable for small or medium size dental laboratories.
Tài liệu tham khảo
Abe S, Noguchi N, Matsuka Y, Shinohara C, Kimura T, Oka K, Okura K, Rodis O, Kawano F (2018) Educational effects using a robot patient simulation system for development of clinical attitude. Eur J Dent Educ 22(3):e327–e336
Abouelleil H, Jeannin C, Sadat A, Grosgogeat B (2015) Development of a chewing simulator for testing dental materials: a pilot study. Br J Appl Sci Technol 5(1):1–8. https://doi.org/10.9734/bjast/2015/13003
Ahmad N, Zaki Z, Ismail W (2014) Region of adaptive threshold segmentation between mean, median and otsu threshold for dental age assessment. In: Computer, communications, and control technology (I4CT), 2014 International Conference on IEEE, pp 353–356
Aich U, Banerjee S (2014) A simple procedure for searching pareto optimal front in machining process: electric discharge machining. Model Simul Eng 2014:26
Alemzadeh K, Hyde R, Gao J (2007) Prototyping a robotic dental testing simulator. Proc Inst Mech Eng [H] 221(4):385–396
Alemzadeh K, Raabe D (2007) Prototyping artificial jaws for the bristol dento-munch robo-simulator;a parallel robot to test dental components and materials. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 1453–1456
Canali F, Guarino C, Locatelli M (2013) Minimum-jerk online planning by a mathematical programming approach. Eng Optimiz 46(6):763–783. https://doi.org/10.1080/0305215x.2013.806916
Cevik P, Eraslan O, Eser K, Tekeli S (2018) Shear bond strength of ceramic brackets bonded to surface-treated feldspathic porcelain after thermocycling. Int J Artif Organs 41(3):160–167
Chaos D, Chacón J, Lopez-Orozco J, Dormido S (2013) Virtual and remote robotic laboratory using EJS, MATLAB and LabVIEW. Sensors 13(2):2595–2612. https://doi.org/10.3390/s130202595
Choi B, You W, Shin S, Moon H, Koo J, Chung W, Choi H (2011) Development of robotic laboratory automation platform with intelligent mobile agents for clinical chemistry. In: Automation science and engineering (CASE), 2011 IEEE Conference on IEEE, pp 708–713
Courtney P (2016) New trends in intelligent robotics in the laboratory. Eur Pharm Rev 21(2):36–38
Datta S, Chaki N (2015) Detection of dental caries lesion at early stage based on image analysis technique. In: IEEE International conference on computer graphics, vision and information security (CGVIS), pp 89–93
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017
Dixon J, Du H, Cork D, Lindsey J (2002) An experiment planner for performing successive focused grid searches with an automated chemistry workstation. Chemometr Intell Lab Syst 62(2):115–128
Fortunić P, Edmundo J (2016) Design and implementation of a bristle bot swarm system. Thesis
Genzen J, Burnham C, Felder R, Hawker C, Lippi G, Palmer O (2017) Challenges and opportunities in implementing total laboratory automation. Clin Chem 64(2):259–264. https://doi.org/10.1373/clinchem.2017.274068
Grischke J, Johannsmeier L, Eich L, Griga L, Haddadin S (2020) Dentronics: towards robotics and artificial intelligence in dentistry. Dent Mater 36(6):765–778
Gui H, Zhang S, Luan N, Lin Y, Shen S, Bautista J (2015) A novel system for navigation-and robot-assisted craniofacial surgery: establishment of the principle prototype. J Craniofacial Surg 26(8):e746–e749
Gürgan C, Yildirim S (2016) Design of neural predictor for performance analysis of experimental automated system in oral photography of dental treatment. Int J Control Syst Robot 1:169–176
Haidar Z (2017) Autonomous robotics: a fresh era of implant dentistry is a reality!. J Oral Res 6(9):230–231
Haj-Ali R, Al Quran F, Adel O (2012) Dental laboratory communication regarding removable dental prosthesis design in the UAE. J Prosthodont 21(5):425–428. https://doi.org/10.1111/j.1532-849x.2011.00842.x
Huashan L, Xiaobo L, Wenxiang W (2013) Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints. Robot Comput-Integr Manuf 29(2):309–317. https://doi.org/10.1016/j.rcim.2012.08.002
Irene B (2018) Laboratory automation in clinical microbiology. Bioengineering 5(4):102. https://doi.org/10.3390/bioengineering5040102
Ivashchenko A, Yablokov A, Komlev S, Stepanov G, Tsimbalistov A (2020) Robot-assisted and robotic systems used in dentistry. Stomatologiia 99(1):95–99
Jae W, Young Y (2000) A generalized approach for the acceleration and deceleration of industrial robots and CNC machine tools. IEEE Trans Ind Electron 47(1):133–139. https://doi.org/10.1109/41.824135
Jałbrzykowski M (2017) A device for testing the durability and exploitation reliability of dental prostheses. Adv Med Sci 62(2):259–265
Jiang J, Zhang Y, Wei C, He T, Liu Y (2015) A review on robot in prosthodontics and orthodontics. Adv Mech Eng 7(1):198748
Jiang J, Han Y, Zhang Y, Yu X, Guo X (2016) Recent advances on masticatory robot. Recent Patents Mech Eng 9(3):184–192
Jin-gang J, Yong-de Z, Ming-liang J, Chun-ge W (2013) Bending process analysis and structure design of orthodontic archwire bending robot. Int J Smart Home 7(5):345–352
Junsen H, Pengfei H, Kaiyuan W, Min Z (2018) Optimal time-jerk trajectory planning for industrial robots. Mech Mach Theory 121:530–544. https://doi.org/10.1016/j.mechmachtheory.2017.11.006
King R, Rowland J, Oliver S, Young M, Aubrey W, Byrne E, Liakata M, Markham M, Pir P, Soldatova L (2009) The automation of science. Science 324(5923):85–89
Ko M, Park S (2018) Alignment of dental depth images from an intraoral scanner. Comput-Aided Design Appl 2018:1–9
Kyriakopoulos K, Saridis G (1988) Minimum jerk path generation. In: Proceedings 1988 ieee international conference on robotics and automation. IEEE Comput. Soc. Press. https://doi.org/10.1109/robot.1988.12075
Lang T, Staufer S, Jennes B, Gaengler P (2014) Clinical validation of robot simulation of toothbrushing-comparative plaque removal efficacy. BMC Oral Health 14(1):82
Lange F, Albu-Schaffer A (2016) Path-accurate online trajectory generation for jerk-limited industrial robots. IEEE Robot Autom Lett 1(1):82–89. https://doi.org/10.1109/lra.2015.2506899
Li J, Lam J, Liu M, Wang Z (2020) Compliant control and compensation for a compact cable-driven robotic manipulator. IEEE Robot Autom Lett 5(4):5417–5424
Lin H (2014) A fast and unified method to find a minimum-jerk robot joint trajectory using particle swarm optimization. J Intell Robotic Syst 75(3–4):379–392
Liu D, Wang Y, Chen T, Matson E (2019) Application of color filter adjustment and k-means clustering method in lane detection for self-driving cars. In: 2019 Third IEEE international conference on robotic computing (IRC), pp 153–158. IEEE
Liu D, Zhao W, Niu J, Li D, Zhou Z, Zhang J, Liu X (2020) Recent progress of robots in stomatology. West China J stomatol 38(1):90–94
Luneckas M, Luneckas T, Udris D, Plonis D, Maskeliunas R, Damasevicius R (2019) Energy-efficient walking over irregular terrain: a case of hexapod robot. Metrol Meas Syst 26(4):645–660. https://doi.org/10.24425/mms.2019.130562
Lyu P (2018) Condition and future of robotics in stomatology. Chin J Stomatol 53(8):513–518
Macfarlane S, Croft E (2003) Jerk-bounded manipulator trajectory planning: design for real-time applications. IEEE Trans Robot Autom 19(1):42–52. https://doi.org/10.1109/tra.2002.807548
Ma L, Zhang Y, Wang D, Lv P, Sun Y, Wang H (2013) Trajectory tracking control of a miniature laser manipulation robotic end-effector for dental preparation. In: Robotics and Biomimetics (ROBIO), 2013 IEEE International Conference on IEEE, pp 468–473
Minah K, Byungyeon K, Byungjun P, Minsuk L, Youngjae W, Choul-Young K, Seungrag L (2018) A digital shade-matching device for dental color determination using the support vector machine algorithm. Sensors 18(9):3051. https://doi.org/10.3390/s18093051
Moreno-Camacho J, Calva-Espinosa D, Leal-Leyva Y, Elizalde-Olivas D, Campos-Romero A, Alcántar-Fernández J (2017) Transformation from a conventional clinical microbiology laboratory to full automation. Lab Med 49(1):e1–e8
Neubert S, Gu X, Gode B, Roddelkopf T, Fleischer H, Stoll N, Thurow K (2019) Workflow management system for the integration of mobile robots in future labs of life sciences. Chem-Ing-Tech 91(3):294–304
Neville H, Dagmar S (2009) Sensitivity of smoothness measures to movement duration, amplitude, and arrests. J Mot Behav 41(6):529–534. https://doi.org/10.3200/35-09-004-rc
Noda Y, Nakajima M, Takahashi M, Mamanee T, Hosaka K, Takagaki T, Ikeda M, Foxton R, Tagami J (2017) The effect of five kinds of surface treatment agents on the bond strength to various ceramics with thermocycle aging. Dent Mater J 36(6):755–761
Pekarovskiy A, Nierhoff T, Hirche S, Buss M (2018) Dynamically consistent online adaptation of fast motions for robotic manipulators. IEEE Trans Rob 34(1):166–182
Raabe D, Alemzadeh K, Harrison A, Ireland A (2009) The chewing robot: a new biologically-inspired way to evaluate dental restorative materials. In: International Conference of the IEEE engineering in medicine and biology society (EMBC), pp 6050–6053
Rainer JJ, Cobos-Guzman S, Galan R (2018) Decision making algorithm for an autonomous guide-robot using fuzzy logic. J Ambient Intell Hum Comput 9(4, SI):1177–1189. https://doi.org/10.1007/s12652-017-0651-9
Ran Z, Sidobre D, He W (2014) Online via-points trajectory generation for reactive manipulations. In: 2014 IEEE/ASME international conference on advanced intelligent mechatronics. IEEE. https://doi.org/10.1109/aim.2014.6878252
Rekow E (2020) Digital dentistry: the new state of the art is it disruptive or destructive? Dent Mater 36(1):9–24
Ren L, Yang J, Tan Y, Hu J, Liu D, Zhu J (2018) An intelligent dental robot. Adv Robot 2018:1–11
Sombolestan S, Rasooli A, Khodaygan S (2019) Optimal path-planning for mobile robots to find a hidden target in an unknown environment based on machine learning. J Ambient Intell Hum Comput 10(5):1841–1850
Sun X, McKenzie F, Bawab S, Li J, Yoon Y, Huang J (2011) Automated dental implantation using image-guided robotics: registration results. Int J Comput Assist Radiol Surg 6(5):627–634
Wang W, Wang W, Dong W, Yu H, Yan Z, Du Z (2015) Dimensional optimization of a minimally invasive surgical robot system based on nsga-ii algorithm. Adv Mech Eng 7:2
Wang M, Li X, Xu K, Jiang R (2012) Smooth trajectory planning for manipulator of cotton harvesting machinery based on quaternion and b-spline. In: 2012 international symposium on instrumentation & measurement, sensor network and automation (IMSNA). IEEE. https://doi.org/10.1109/msna.2012.6324531
Won H, Kiyun Y (2009) Bundle block adjustment with 3d natural cubic splines. Sensors 9(12):9629–9665. https://doi.org/10.3390/s91209629
Yan Y (2020) Error recognition of robot kinematics parameters based on genetic algorithms. J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-020-01781-x
Yang J, Wang H, Chen W, Li K (2013) Time-jerk optimal trajectory planning for robotic manipulators. In: 2013 IEEE international conference on robotics and biomimetics (ROBIO), IEEE, pp 2257–2262
Yeotikar S, Parimi A, Rao Y (2016) Automation of end effector guidance of robotic arm for dental implantation using computer vision. In: Distributed Computing, VLSI, electrical circuits and robotics (DISCOVER), IEEE, pp 84–89