Intelligent Fault Diagnosis of the High-Speed Train With Big Data Based on Deep Neural Networks

IEEE Transactions on Industrial Informatics - Tập 13 Số 4 - Trang 2106-2116 - 2017
Hexuan Hu1, Tang Bo1, Xuejiao Gong1, Wei Wei2, Huihui Wang3
1College of Computer and Information, Tibet Agricultural and Animal Husbandry College, Linzhi, China
2School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, China
3Department of Engineering, Jacksonville University, Jacksonville, FL, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1142/S0129065708001695

10.1016/S0925-2312(02)00597-0

10.1109/IFITA.2010.324

10.1109/TIE.2011.2106094

10.1109/TIE.2016.2519325

pang, 2015, Faults recognition of high-speed train bogie based on deep learning, J Railway Sci Technol, 12, 1283

10.1109/IJCNN.2014.6889729

10.1109/IJCNN.2016.7727518

10.1016/j.engappai.2016.10.002

10.1109/TASL.2011.2134090

10.1109/TASL.2011.2109382

marz, 2015, Big Data Principles and Best Practices of Scalable Realtime Data Systems

10.1109/TBDATA.2016.2622719

10.1016/j.future.2015.03.023

10.1109/TBDATA.2015.2472014

10.1109/TSP.2007.893931

yan, 2012, The analysis of vehicle model establishment and malfunction based on MATLAB/ Simulink, J East China Jiaotong Univ, 29, 13

10.1016/j.dsp.2011.09.008

zhang, 2008, Study on the theory and analysis of the key components of train safety monitoring, Chengdu Southwest Jiaotong Univercity, 23

shi, 2012, Vibration analysis of high-speed vehicles under the conditions of various speed and linse, J Beijing Jiaotong Univ, 35, 112

10.1016/j.sigpro.2010.10.008

huang, 2013, Simulation on wheel wear prediction of high-speed train, J China Railway Soc, 35, 14

hinton, 2006, Reducing the dimensionality of data with neural networks, Science, 313, 504, 10.1126/science.1127647

10.1299/jmtl.1.88

wang, 2000, Study on the reliability test method and evaluation specifications of railway freight car, China Railway Sci, 31, 116

10.1162/neco.2006.18.7.1527

10.1109/ITST.2007.4295927

meng, 2016, Mllib: Machine learning in apache spark, J Mach Learn Res, 17, 1235

10.1007/s10346-009-0183-2

10.1016/j.ymssp.2010.07.013

10.1016/j.ymssp.2013.01.015

10.1016/j.ymssp.2005.09.012

10.1016/j.ymssp.2009.06.015

10.7763/IJMLC.2012.V2.93