Intelligent Bézier curve-based path planning model using Chaotic Particle Swarm Optimization algorithm
Tóm tắt
Từ khóa
Tài liệu tham khảo
Elhoseny, M., Tharwat, A., Farouk, A., Hassanien, A.E.: K-coverage model based on genetic algorithm to extend wsn lifetime. IEEE sensors letters 1(4), 1–4 (2017)
Li, R., Wu, W., Qiao, H.: The compliance of robotic hands-from functionality to mechanism. Assem. Autom. 35(3), 281–286 (2015)
Robinson, D.C., Sanders, D.A., Mazharsolook, E.: Ambient intelligence for optimal manufacturing and energy efficiency. Assem. Autom. 35(3), 234–248 (2015)
Manikas, T.W., Ashenayi, K., Wainwright, R.L.: Genetic algorithms for autonomous robot navigation. IEEE Instrum. Meas. Mag. 10(6), 26–31 (2007)
Metawa, N., Hassan, M.K., Elhoseny, M.: Genetic algorithm based model for optimizing bank lending decisions. Expert Syst. Appl. 80, 75–82 (2017)
Elhoseny, M., Shehab, A., Yuan, X.: Optimizing robot path in dynamic environments using genetic algorithm and bezier curve. J. Intell. Fuzzy Syst. 33(4), 2305–2316 (2017)
Tharwat, A.: Linear vs. quadratic discriminant analysis classifier: a tutorial. Int. J. Appl. Pattern Recognit. 3(2), 145–180 (2016)
Elhoseny, M., Tharwat, A., Hassanien, A.E.: Bezier curve based path planning in a dynamic field using modified genetic algorithm. J. Comput. Sci. (2017). https://doi.org/10.1016/j.jocs.2017.08.004
Roberge, V., Tarbouchi, M., Labonté, G.: Comparison of parallel genetic algorithm and particle swarm optimization for real-time uav path planning. IEEE Trans. Ind. Inform. 9(1), 132–141 (2013)
Contreras-Cruz, M.A., Ayala-Ramirez, V., Hernandez-Belmonte, U.H.: Mobile robot path planning using artificial bee colony and evolutionary programming. Appl. Soft Comput. 30, 319–328 (2015)
Das, P., Behera, H., Panigrahi, B.: A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning. Swarm Evol. Comput. 28, 14–28 (2016)
Gálvez, A., Iglesias, A., Cabellos, L.: Tabu search-based method for Bézier curve parameterization. Int. J. Softw. Eng. Appl. 7, 283–296 (2013)
Li, B., Liu, L., Zhang, Q., Lv, D., Zhang, Y., Zhang, J., Shi, X.: Path planning based on firefly algorithm and Bezier curve. In: IEEE International Conference on Information and Automation (ICIA), IEEE, pp. 630–633 (2014)
Arana-Daniel, N., Gallegos, A.A., López-Franco, C., Alanis, A.Y.: Smooth global and local path planning for mobile robot using particle swarm optimization, radial basis functions, splines and Bezier curves. In: IEEE Congress on Evolutionary Computation (CEC), IEEE, pp. 175–182 (2014)
Ziolkowski, M., Gratkowski, S.: Genetic algorithm coupled with Bézier curves applied to the magnetic field on a solenoid axis synthesis. Arch. Electr. Eng. 65(2), 361–370 (2016)
Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning. Springer, New York, pp. 760–766 (2010)
Maitra, M., Chatterjee, A.: A hybrid cooperative-comprehensive learning based pso algorithm for image segmentation using multilevel thresholding. Expert Syst. Appl. 34(2), 1341–1350 (2008)
Ibrahim, A., Tharwat, A., Gaber, T., Hassanien, A.E.: Optimized superpixel and adaboost classifier for human thermal face recognition. Signal Image Video Process. (2017). https://doi.org/10.1007/s11760-017-1212-6
Tharwat, A., Hassanien, A.E., Elnaghi, B.E.: A ba-based algorithm for parameter optimization of support vector machine. Pattern Recogn. Lett. 93, 13–22 (2017)
Tharwat, A., Gaber, T., Ibrahim, A., Hassanien, A.E.: Linear discriminant analysis: a detailed tutorial. AI Commun. 30(2), 169–190 (2017)
Subasi, A.: Classification of emg signals using pso optimized svm for diagnosis of neuromuscular disorders. Comput. Biol. Med. 43(5), 576–586 (2013)
Van der Merwe, D., Engelbrecht, A.P.: Data clustering using particle swarm optimization. In: The 2003 Congress on Evolutionary Computation, CEC’03, vol. 1., IEEE, pp. 215–220 (2003)
Tharwat, A.: Principal component analysis-a tutorial. Int. J. Appl. Pattern Recogn. 3(3), 197–240 (2016)
Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Congress on Evolutionary Computation, CEC2004, vol. 2, IEEE, pp. 1980–1987 (2004)
Miyatake, M., Veerachary, M., Toriumi, F., Fujii, N., Ko, H.: Maximum power point tracking of multiple photovoltaic arrays: a pso approach. IEEE Trans. Aerosp. Electron. Syst. 47(1), 367–380 (2011)
Molazei, S., Ghazizadeh-Ahsaee, M.: Mopso algorithm for distributed generator allocation. In: Fourth International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), IEEE, pp. 1340–1345 (2013)
Wang, G.G., Guo, L., Gandomi, A.H., Hao, G.S., Wang, H.: Chaotic krill herd algorithm. Inf. Sci. 274, 17–34 (2014)
Gharooni-fard, G., Moein-darbari, F., Deldari, H., Morvaridi, A.: Scheduling of scientific workflows using a chaos-genetic algorithm. Proc. Comput. Sci. 1(1), 1445–1454 (2010)
Talatahari, S., Azar, B.F., Sheikholeslami, R., Gandomi, A.: Imperialist competitive algorithm combined with chaos for global optimization. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1312–1319 (2012)
Gandomi, A., Yang, X.S., Talatahari, S., Alavi, A.: Firefly algorithm with chaos. Commun. Nonlinear Sci. Numer. Simul. 18(1), 89–98 (2013)
Ma, Y., Zamirian, M., Yang, Y., Xu, Y., Zhang, J.: Path planning for mobile objects in four-dimension based on particle swarm optimization method with penalty function. In: Mathematical Problems in Engineering (2013)
Liang, J., Song, H., Qu, B., Liu, Z.: Comparison of three different curves used in path planning problems based on particle swarm optimizer. In: Mathematical Problems in Engineering (2014)
Sahingoz, O.K.: Generation of Bezier curve-based flyable trajectories for multi-uav systems with parallel genetic algorithm. J. Intell. Robotic Syst. 74(1–2), 499–511 (2014)
Gardner, B., Selig, M.: Airfoil design using a genetic algorithm and an inverse method. In: 41st Aerospace Sciences Meeting and Exhibit, pp. 1–12 (2003)
Jolly, K., Kumar, R.S., Vijayakumar, R.: A Bezier curve based path planning in a multi-agent robot soccer system without violating the acceleration limits. Robot. Auton. Syst. 57(1), 23–33 (2009)
Giannakoglou, K.: A design method for turbine-blades using genetic algorithms on parallel computers. Comput. Fluid Dyn. 98(1), 1–2 (1998)
Chen, L., Wang, S., Hu, H., McDonald-Maier, K.: Bézier curve based trajectory planning for an intelligent wheelchair to pass a doorway. In: International Conference on Control (CONTROL), IEEE, pp. 339–344 (2012)
Choi, J.w., Curry, R., Elkaim, G.: Path planning based on Bézier curve for autonomous ground vehicles. In: Advances in Electrical and Electronics Engineering-IAENG Special Edition of the World Congress on Engineering and Computer Science, (WCECS’08), IEEE, pp. 158–166 (2008)
Wagner, R., Birbach, O., Frese, U.: Rapid development of manifold-based graph optimization systems for multi-sensor calibration and slam. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, pp. 3305–3312 (2011)
Heppner, F., Grenander, U.: A stochastic nonlinear model for coordinated bird flocks. Ubiquity Chaos 99, 233–238 (1990)
Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM Siggraph Comput. Graph. 21(4), 25–34 (1987)
Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science, vol. 1., New York, pp. 39–43 (1995)
Yang, X.S.: Nature-Inspired Optimization Algorithms, 1st edn. Elsevier, Amsterdam (2014)
Ren, B., Zhong, W.: Multi-objective optimization using chaos based pso. Inf. Technol. J. 10(10), 1908–1916 (2011)
Vohra, R., Patel, B.: An efficient chaos-based optimization algorithm approach for cryptography. Commun. Netw. Secur. 1(4), 75–79 (2012)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)