Intelligence artificielle : quel avenir en anatomie pathologique ?
Tài liệu tham khảo
Mahmud, 2018, Applications of deep learning and reinforcement learning to biological data, IEEE Trans Neural Netw Learn Syst, 29, 2063, 10.1109/TNNLS.2018.2790388
Cao, 2018, Deep learning and its applications in biomedicine, Genomics Proteomics Bioinformatics, 16, 17, 10.1016/j.gpb.2017.07.003
Rav, 2017, Deep learning for health informatics, IEEE J Biomed Health Inform, 21, 4, 10.1109/JBHI.2016.2636665
Jones, 2017, Computational biology: deep learning, Emerg Top Life Sci, 1, 257, 10.1042/ETLS20160025
Angermueller, 2016, Deep learning for computational biology, Mol Syst Biol, 12, 10.15252/msb.20156651
Min, 2016
Krizhevsky, 2012, 1097
Zeiler, 2013
Simonyan, 2014
Szegedy, 2014
Komura, 2018, Machine learning methods for histopathological image analysis, Computat Struct Biotechnol J, 16, 34, 10.1016/j.csbj.2018.01.001
Cruz-Roa, 2017, Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent, Scientic Reports, 7
Hamilton, 2014, Digital pathology and image analysis in tissue biomarker research, Methods, 70, 59, 10.1016/j.ymeth.2014.06.015
Janowczyk, 2016, Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases, J Pathol Inform, 7, 29, 10.4103/2153-3539.186902
Madabhushi, 2016, Image analysis and machine learning in digital pathology: challenges and opportunities, Med Image Anal, 33, 170, 10.1016/j.media.2016.06.037
Saha, 2016, Computer-aided diagnosis of breast cancer using cytological images: a systematic review, Tissue Cell, 48, 461, 10.1016/j.tice.2016.07.006
Saha, 2018, Ecient deep learning model for mitosis detection using breast histopathology images, Comput Med Imaging Graph, 64, 29, 10.1016/j.compmedimag.2017.12.001
Henriet, 2016, Apport diagnostique des reseaux de neurones articiels dans les tumeurs de Spitz de l’enfant et de l’adulte, Ann Dermatol Venereol, 143, S240, 10.1016/j.annder.2016.09.325
Devalland, 2017, Contribution to predict oncotype dx recurrence score from pathologic features in luminal b breast carcinoma using articial neural networks, ps-21-031, Virchows Arch Eur J Pathol, 471, 1
Zemouri, 2018, Constructive deep neural network for breast cancer diagnosis, Elsevier, ScienceDirect, 51, 98
Steiner, 2018, Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer, Am J Surg Pathol, 42, 1636, 10.1097/PAS.0000000000001151
Olsen, 2018, Diagnostic performance of deep learning algorithms applied to three common diagnoses in dermatopathology, J Pathol Inform, 9, 32, 10.4103/jpi.jpi_31_18
Xu, 2016, A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images, Neurocomputing, 191, 214, 10.1016/j.neucom.2016.01.034
Feng, 2018, Breast cancer cell nuclei classication in histopathology images using deep neural networks, Int J CARS, 13, 179, 10.1007/s11548-017-1663-9
Veta, 2016, Mitosis counting in breast cancer: object-level interobserver agreement and comparison to an automatic method, PLOS ONE, 11, 1, 10.1371/journal.pone.0161286
Vandenberghe, 2017, Relevance of deep learning to facilitate the diagnosis of her2 status in breast cancer, Scientic Rep, 7, 45938, 10.1038/srep45938
Grabe, 2018, Digitale pathologie in der immunonkologie-aktuelle chancen und herausforderungen, Pathologe, 39, 539, 10.1007/s00292-018-0540-9
Sheikhzadeh, 2018, Automatic labeling of molecular biomarkers of immunohistochemistry images using fully convolutional networks, PloS one, 13, 10.1371/journal.pone.0190783
Turkki, 2016, Antibody-supervised deep learning for quantication of tumor-inltrating immune cells in hematoxylin and eosin stained breast cancer samples, J Pathol Inform, 7, 38, 10.4103/2153-3539.189703
Granter, 2017, Straw men, deep learning, and the future of the human microscopist: response to articial intelligence and the pathologist: future frenemies?, Arch Pathol Lab Med, 141, 624, 10.5858/arpa.2017-0023-ED