Intelligence artificielle et glaucome : une revue de la littérature

Journal Francais d'Ophtalmologie - Tập 45 - Trang 216-232 - 2022
R. Bunod1, E. Augstburger1, E. Brasnu1,2,3, A. Labbe1,2,3,4, C. Baudouin1,2,3,4
1Service d’ophtalmologie 3, IHU FOReSIGHT, centre hospitalier national des Quinze-Vingts, 28, rue de Charenton, 75012 Paris, France
2CHNO des Quinze-Vingts, IHU FOReSIGHT, Inserm-DGOS CIC 1423, 17, rue Moreau, 75012 Paris, France
3Sorbonne universités, INSERM, CNRS, institut de la Vision, 17, rue Moreau, 75012 Paris, France
4Service d’ophtalmologie, hôpital Ambroise-Paré, AP–HP, université de Paris Saclay, 9, avenue Charles-de-Gaulle, 92100 Boulogne-Billancourt, France

Tài liệu tham khảo

Steinmetz, 2021, Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study, Lancet Glob Health, 9, e144, 10.1016/S2214-109X(20)30489-7 Tham, 2014, Global prevalence of glaucoma and projections of glaucoma burden through 2040, Ophthalmology, 121, 2081, 10.1016/j.ophtha.2014.05.013 Chua, 2015, Prevalence, risk factors, and visual features of undiagnosed glaucoma: the Singapore Epidemiology of Eye Diseases Study, JAMA Ophthalmol, 133, 938, 10.1001/jamaophthalmol.2015.1478 Shaikh, 2014, Burden of undetected and untreated glaucoma in the United States, Am J Ophthalmol, 158, 10.1016/j.ajo.2014.08.023 Urata, 2020, Comparison of short- and long-term variability in standard perimetry and spectral domain optical coherence tomography in glaucoma, Am J Ophthalmol, 210, 19, 10.1016/j.ajo.2019.10.034 Davenport, 2019, The potential for artificial intelligence in healthcare, Future Healthc J, 6, 94, 10.7861/futurehosp.6-2-94 Muehlematter, 2021, Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): a comparative analysis, Lancet Digit Health, 3, e195, 10.1016/S2589-7500(20)30292-2 Benet, 2022, Artificial intelligence: the unstoppable revolution in ophthalmology, Surv Ophthalmol, 67, 252, 10.1016/j.survophthal.2021.03.003 Turing, 1950, I.—Computing machinery and intelligence, Mind, LIX, 433, 10.1093/mind/LIX.236.433 Kline, 2011, Cybernetics, automata studies, and the dartmouth conference on artificial intelligence, IEEE Ann Hist Comput, 33, 5, 10.1109/MAHC.2010.44 LeCun, 2015, Deep learning, Nature, 521, 436, 10.1038/nature14539 Jordan, 2015, Machine learning: trends, perspectives, and prospects, Science, 349, 255, 10.1126/science.aaa8415 Weiss, 2016, A survey of transfer learning, J Big Data, 3, 9, 10.1186/s40537-016-0043-6 Hawkins, 2004, The problem of overfitting, J Chem Inf Comput Sci, 44, 1, 10.1021/ci0342472 Susanna, 2007, New findings in the evaluation of the optic disc in glaucoma diagnosis, Curr Opin Ophthalmol, 18, 122, 10.1097/ICU.0b013e328040bfe0 Sinthanayothin, 1999, Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images, Br J Ophthalmol, 83, 902, 10.1136/bjo.83.8.902 Chrástek, 2005, Automated segmentation of the optic nerve head for diagnosis of glaucoma, Med Image Anal, 9, 297, 10.1016/j.media.2004.12.004 Muramatsu, 2011, Automated segmentation of optic disc region on retinal fundus photographs: comparison of contour modeling and pixel classification methods, Comput Methods Programs Biomed, 101, 23, 10.1016/j.cmpb.2010.04.006 Carmona, 2008, Identification of the optic nerve head with genetic algorithms, Artif Intell Med, 43, 243, 10.1016/j.artmed.2008.04.005 Mookiah, 2013, Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation, Proc Inst Mech Eng [H], 227, 37, 10.1177/0954411912458740 Nayak, 2009, Automated diagnosis of glaucoma using digital fundus images, J Med Syst, 33, 337, 10.1007/s10916-008-9195-z Bock, 2010, Glaucoma risk index: automated glaucoma detection from color fundus images, Med Image Anal, 14, 471, 10.1016/j.media.2009.12.006 Issac, 2015, An adaptive threshold based image processing technique for improved glaucoma detection and classification, Comput Methods Programs Biomed, 122, 229, 10.1016/j.cmpb.2015.08.002 Cheng, 2013, Superpixel classification based optic disc and optic cup segmentation for glaucoma screening, IEEE Trans Med Imaging, 32, 1019, 10.1109/TMI.2013.2247770 Ahn, 2018, A deep learning model for the detection of both advanced and early glaucoma using fundus photography. Bhattacharya S, éditeur, PLOS ONE, 13, e0207982, 10.1371/journal.pone.0207982 Shibata, 2018, Development of a deep residual learning algorithm to screen for glaucoma from fundus photography, Sci Rep, 8, 14665, 10.1038/s41598-018-33013-w Rogers, 2019, Evaluation of an AI system for the automated detection of glaucoma from stereoscopic optic disc photographs: the European Optic Disc Assessment Study, Eye, 33, 1791, 10.1038/s41433-019-0510-3 Ting, 2017, Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes, JAMA, 318, 2211, 10.1001/jama.2017.18152 Asaoka, 2019, Validation of a deep learning model to screen for glaucoma using images from different fundus cameras and data augmentation, Ophthalmol Glaucoma, 2, 224, 10.1016/j.ogla.2019.03.008 Christopher, 2018, Performance of deep learning architectures and transfer learning for detecting glaucomatous optic neuropathy in fundus photographs, Sci Rep, 8, 16685, 10.1038/s41598-018-35044-9 Liu, 2019, Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs, JAMA Ophthalmol, 137, 1353, 10.1001/jamaophthalmol.2019.3501 Li, 2018, Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs, Ophthalmology, 125, 1199, 10.1016/j.ophtha.2018.01.023 Li, 2020, Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs, Graefes Arch Clin Exp Ophthalmol, 258, 851, 10.1007/s00417-020-04609-8 Hemelings, 2020, Accurate prediction of glaucoma from colour fundus images with a convolutional neural network that relies on active and transfer learning, Acta Ophthalmol (Copenh) [Internet], 98 Cho, 2021, Deep learning ensemble method for classifying glaucoma stages using fundus photographs and convolutional neural networks, Curr Eye Res, 46, 1516, 10.1080/02713683.2021.1900268 Jampel, 2009, Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients, Am J Ophthalmol, 147, 10.1016/j.ajo.2008.07.023 Varma, 1992, Expert agreement in evaluating the optic disc for glaucoma, Ophthalmology, 99, 215, 10.1016/S0161-6420(92)31990-6 Mariottoni, 2021, An objective structural and functional reference standard in glaucoma, Sci Rep, 11, 1752, 10.1038/s41598-021-80993-3 Phene, 2019, Deep learning and glaucoma specialists, Ophthalmology, 126, 1627, 10.1016/j.ophtha.2019.07.024 Jammal, 2020, Human versus machine: comparing a deep learning algorithm to human gradings for detecting glaucoma on fundus photographs, Am J Ophthalmol, 211, 123, 10.1016/j.ajo.2019.11.006 Al-Aswad, 2019, Evaluation of a deep learning system for identifying glaucomatous optic neuropathy based on color fundus photographs, J Glaucoma, 28, 1029, 10.1097/IJG.0000000000001319 Buisson, 2021, Deep learning versus ophthalmologists for screening for glaucoma on fundus examination: a systematic review and meta-analysis, Clin Exp Ophthalmol, 49, 1027, 10.1111/ceo.14000 Bussel, 2014, OCT for glaucoma diagnosis, screening and detection of glaucoma progression, Br J Ophthalmol, 98, ii15, 10.1136/bjophthalmol-2013-304326 Zhang, 2017, Comparison of glaucoma progression detection by optical coherence tomography and visual field, Am J Ophthalmol, 184, 63, 10.1016/j.ajo.2017.09.020 Tatham, 2017, Detecting structural progression in glaucoma with optical coherence tomography, Ophthalmology, 124, S57, 10.1016/j.ophtha.2017.07.015 Miki, 2017, Prevalence and associated factors of segmentation errors in the peripapillary retinal nerve fiber layer and macular ganglion cell complex in spectral-domain optical coherence tomography images, J Glaucoma, 26, 995, 10.1097/IJG.0000000000000771 Asrani, 2014, Artifacts in spectral-domain optical coherence tomography measurements in glaucoma, JAMA Ophthalmol, 132, 396, 10.1001/jamaophthalmol.2013.7974 Devalla, 2019, A deep learning approach to denoise optical coherence tomography images of the optic nerve head, Sci Rep, 9, 14454, 10.1038/s41598-019-51062-7 Lazaridis, 2021, OCT signal enhancement with deep learning, Ophthalmol Glaucoma, 4, 295, 10.1016/j.ogla.2020.10.008 Qiu, 2021, Comparative study of deep neural networks with unsupervised Noise2Noise strategy for noise reduction of optical coherence tomography images, J Biophotonics [Internet], 10.1002/jbio.202100151 Devalla, 2018, A deep learning approach to digitally stain optical coherence tomography images of the optic nerve head, Investig Opthalmology Vis Sci, 59, 63, 10.1167/iovs.17-22617 Devalla, 2018, DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images, Biomed Opt Express, 9, 3244, 10.1364/BOE.9.003244 Devalla, 2020, Towards label-free 3D segmentation of optical coherence tomography images of the optic nerve head using deep learning, Biomed Opt Express, 11, 6356, 10.1364/BOE.395934 Mariottoni, 2020, Quantification of retinal nerve fibre layer thickness on optical coherence tomography with a deep learning segmentation-free approach, Sci Rep, 10, 402, 10.1038/s41598-019-57196-y Huang, 2005, Development and comparison of automated classifiers for glaucoma diagnosis using stratus optical coherence tomography, Investig Opthalmology Vis Sci, 46, 4121, 10.1167/iovs.05-0069 Burgansky-Eliash, 2005, Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study, Investig Opthalmology Vis Sci, 46, 4147, 10.1167/iovs.05-0366 Bizios, 2010, Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT, Acta Ophthalmol (Copenh), 88, 44, 10.1111/j.1755-3768.2009.01784.x Barella, 2013, Glaucoma diagnostic accuracy of machine learning classifiers using retinal nerve fiber layer and optic nerve data from SD-OCT, J Ophthalmol, 2013, 1, 10.1155/2013/789129 Naithani, 2007, Evaluation of optical coherence tomography and heidelberg retinal tomography parameters in detecting early and moderate glaucoma, Investig Opthalmology Vis Sci, 48, 3138, 10.1167/iovs.06-1407 Asaoka, 2019, Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images, Am J Ophthalmol, 198, 136, 10.1016/j.ajo.2018.10.007 Lee, 2020, Diagnosing glaucoma with spectral-domain optical coherence tomography using deep learning classifier, J Glaucoma, 29, 287, 10.1097/IJG.0000000000001458 Muhammad, 2017, Hybrid deep learning on single wide-field optical coherence tomography scans accurately classifies glaucoma suspects, J Glaucoma, 26, 1086, 10.1097/IJG.0000000000000765 Thompson, 2020, Assessment of a segmentation-free deep learning algorithm for diagnosing glaucoma from optical coherence tomography scans, JAMA Ophthalmol, 138, 333, 10.1001/jamaophthalmol.2019.5983 Maetschke, 2019, A feature agnostic approach for glaucoma detection in OCT volumes. Grulkowski I, éditeur, PLOS ONE, 14, e0219126, 10.1371/journal.pone.0219126 Ran, 2019, Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep learning analysis, Lancet Digit Health, 1, e172, 10.1016/S2589-7500(19)30085-8 Russakoff, 2020, A 3D deep learning system for detecting referable glaucoma using full OCT macular cube scans, Transl Vis Sci Technol, 9, 12, 10.1167/tvst.9.2.12 Belghith, 2014, A unified framework for glaucoma progression detection using Heidelberg Retina Tomograph images, Comput Med Imaging Graph, 38, 411, 10.1016/j.compmedimag.2014.03.002 Belghith, 2015, Learning from healthy and stable eyes: a new approach for detection of glaucomatous progression, Artif Intell Med, 64, 105, 10.1016/j.artmed.2015.04.002 Wang, 2020, An artificial intelligence approach to assess spatial patterns of retinal nerve fiber layer thickness maps in glaucoma, Transl Vis Sci Technol, 9, 41, 10.1167/tvst.9.9.41 Panda, 2021, Describing the structural phenotype of the glaucomatous optic nerve head using artificial intelligence, Am J Ophthalmol Christopher, 2018, Retinal nerve fiber layer features identified by unsupervised machine learning on optical coherence tomography scans predict glaucoma progression, Investig Opthalmology Vis Sci, 59, 2748, 10.1167/iovs.17-23387 Bowd, 2021, Individualized glaucoma change detection using deep learning auto encoder-based regions of interest, Transl Vis Sci Technol, 10, 19, 10.1167/tvst.10.8.19 Tanna, 2012, Glaucoma progression analysis software compared with expert consensus opinion in the detection of visual field progression in glaucoma, Ophthalmology, 119, 468, 10.1016/j.ophtha.2011.08.041 Rao, 2013, Agreement between event-based and trend-based glaucoma progression analyses, Eye, 27, 803, 10.1038/eye.2013.77 Goldbaum, 1994, Interpretation of automated perimetry for glaucoma by neural network, Invest Ophthalmol Vis Sci, 35, 3362 Bizios, 2007, Trained artificial neural network for glaucoma diagnosis using visual field data: a comparison with conventional algorithms, J Glaucoma, 16, 20, 10.1097/IJG.0b013e31802b34e4 Goldbaum, 2002, Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry, Invest Ophthalmol Vis Sci, 43, 162 Kwokleung Chan, 2002, Comparison of machine learning and traditional classifiers in glaucoma diagnosis, IEEE Trans Biomed Eng, 49, 963, 10.1109/TBME.2002.802012 Lietman, 1999, Neural networks for visual field analysis: how do they compare with other algorithms?, J Glaucoma, 8, 77, 10.1097/00061198-199902000-00014 Andersson, 2013, Comparison of clinicians and an artificial neural network regarding accuracy and certainty in performance of visual field assessment for the diagnosis of glaucoma, Acta Ophthalmol (Copenh), 91, 413, 10.1111/j.1755-3768.2012.02435.x Li, 2018, Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network, BMC Med Imaging, 18, 35, 10.1186/s12880-018-0273-5 Kucur ŞS, 2018, A deep learning approach to automatic detection of early glaucoma from visual fields. Hu J, éditeur, PLOS ONE, 13, e0206081, 10.1371/journal.pone.0206081 Asaoka, 2016, Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier, Ophthalmology, 123, 1974, 10.1016/j.ophtha.2016.05.029 Goldbaum, 2005, Unsupervised learning with independent component analysis can identify patterns of glaucomatous visual field defects, Trans Am Ophthalmol Soc, 103, 270 Bowd, 2014, Glaucomatous patterns in frequency doubling technology (FDT) perimetry data identified by unsupervised machine learning classifiers. Gonzalez P, éditeur, PLoS ONE, 9, e85941, 10.1371/journal.pone.0085941 Elze, 2015, Patterns of functional vision loss in glaucoma determined with archetypal analysis, J R Soc Interface, 12, 20141118, 10.1098/rsif.2014.1118 Sample, 2004, Using unsupervised learning with variational bayesian mixture of factor analysis to identify patterns of glaucomatous visual field defects, Investig Opthalmology Vis Sci, 45, 2596, 10.1167/iovs.03-0343 Keltner, 2003, Classification of visual field abnormalities in the ocular hypertension treatment study, Arch Ophthalmol, 121, 643, 10.1001/archopht.121.5.643 Brigatti, 1997, Automatic detection of glaucomatous visual field progression with neural networks, Arch Ophthalmol, 115, 725, 10.1001/archopht.1997.01100150727005 Wang, 2019, An artificial intelligence approach to detect visual field progression in glaucoma based on spatial pattern analysis, Investig Opthalmology Vis Sci, 60, 365, 10.1167/iovs.18-25568 Yousefi, 2018, Detection of longitudinal visual field progression in glaucoma using machine learning, Am J Ophthalmol, 193, 71, 10.1016/j.ajo.2018.06.007 Sample, 2005, Unsupervised machine learning with independent component analysis to identify areas of progression in glaucomatous visual fields, Investig Opthalmology Vis Sci, 46, 3684, 10.1167/iovs.04-1168 Lin, 2003, Neural networks to identify glaucomatous visual field progression, Am J Ophthalmol, 135, 49, 10.1016/S0002-9394(02)01836-6 Saeedi, 2021, Development and comparison of machine learning algorithms to determine visual field progression, Transl Vis Sci Technol, 10, 27, 10.1167/tvst.10.7.27 Dixit, 2021, Assessing glaucoma progression using machine learning trained on longitudinal visual field and clinical data, Ophthalmology, 128, 1016, 10.1016/j.ophtha.2020.12.020 Wen, 2019, Forecasting future Humphrey Visual Fields using deep learning. Vavvas DG, éditeur, PLOS ONE, 14, e0214875, 10.1371/journal.pone.0214875 Berchuck, 2019, Estimating rates of progression and predicting future visual fields in glaucoma using a deep variational autoencoder, Sci Rep, 9, 18113, 10.1038/s41598-019-54653-6 Sample, 2002, Using machine learning classifiers to identify glaucomatous change earlier in standard visual fields, Invest Ophthalmol Vis Sci, 43, 2660 Brigatti, 1996, Neural networks to identify glaucoma with structural and functional measurements, Am J Ophthalmol, 121, 511, 10.1016/S0002-9394(14)75425-X Bizios, 2011, Integration and fusion of standard automated perimetry and optical coherence tomography data for improved automated glaucoma diagnostics, BMC Ophthalmol, 11, 20, 10.1186/1471-2415-11-20 Racette, 2010, Combining functional and structural tests improves the diagnostic accuracy of relevance vector machine classifiers, J Glaucoma, 19, 167, 10.1097/IJG.0b013e3181a98b85 Bowd, 2008, Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes, Investig Opthalmology Vis Sci, 49, 945, 10.1167/iovs.07-1083 Yousefi, 2014, Glaucoma progression detection using structural retinal nerve fiber layer measurements and functional visual field points, IEEE Trans Biomed Eng, 61, 1143, 10.1109/TBME.2013.2295605 Bowd, 2008, Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes, Investig Opthalmology Vis Sci, 49, 945, 10.1167/iovs.07-1083 Bowd, 2012, Predicting glaucomatous progression in glaucoma suspect eyes using relevance vector machine classifiers for combined structural and functional measurements, Investig Opthalmology Vis Sci, 53, 2382, 10.1167/iovs.11-7951 Medeiros, 2012, Combining structural and functional measurements to improve estimates of rates of glaucomatous progression, Am J Ophthalmol, 153, 10.1016/j.ajo.2011.11.015 Grewal, 2008, Artificial neural network-based glaucoma diagnosis using retinal nerve fiber layer analysis, Eur J Ophthalmol, 18, 915, 10.1177/112067210801800610 Kim, 2017, Development of machine learning models for diagnosis of glaucoma. Liu B, éditeur, PLOS ONE, 12, e0177726, 10.1371/journal.pone.0177726 Mehta, 2021, Automated detection of glaucoma with interpretable machine learning using clinical data and multi-modal retinal images, Am J Ophthalmol, 231, 154, 10.1016/j.ajo.2021.04.021 Xiong, 2021, Multi-modal machine learning using visual fields and peripapillary circular OCT scans in detection of glaucomatous optic neuropathy, Ophthalmology An, 2019, Glaucoma diagnosis with machine learning based on optical coherence tomography and color fundus images, J Healthc Eng, 2019, 1, 10.1155/2019/4061313 Medeiros, 2019, From machine to machine, Ophthalmology, 126, 513, 10.1016/j.ophtha.2018.12.033 Thompson, 2019, A deep learning algorithm to quantify neuroretinal rim loss from optic disc photographs, Am J Ophthalmol, 201, 9, 10.1016/j.ajo.2019.01.011 Medeiros, 2021, Detection of progressive glaucomatous optic nerve damage on fundus photographs with deep learning, Ophthalmology, 128, 383, 10.1016/j.ophtha.2020.07.045 Lee, 2021, Predicting glaucoma development with longitudinal deep learning predictions from fundus photographs, Am J Ophthalmol, 225, 86, 10.1016/j.ajo.2020.12.031 Datta, 2021, RetiNerveNet: using recursive deep learning to estimate pointwise 24-2 visual field data based on retinal structure, Sci Rep, 11, 12562, 10.1038/s41598-021-91493-9 Shin, 2021, Visual field inference from optical coherence tomography using deep learning algorithms: a comparison between devices, Transl Vis Sci Technol, 10, 4, 10.1167/tvst.10.7.4 Park, 2020, A deep learning approach to predict visual field using optical coherence tomography. Grulkowski I, éditeur, PLOS ONE, 15, e0234902, 10.1371/journal.pone.0234902 Huang, 2021, Estimating the severity of visual field damage from retinal nerve fiber layer thickness measurements with artificial intelligence, Transl Vis Sci Technol, 10, 16, 10.1167/tvst.10.9.16 Yu, 2021, Estimating global visual field indices in glaucoma by combining macula and optic disc OCT scans using 3-dimensional convolutional neural networks, Ophthalmol Glaucoma, 4, 102, 10.1016/j.ogla.2020.07.002 Asano, 2021, Predicting the central 10 degrees visual field in glaucoma by applying a deep learning algorithm to optical coherence tomography images, Sci Rep, 11, 2214, 10.1038/s41598-020-79494-6 Xu, 2020, Predicting the glaucomatous central 10-degree visual field from optical coherence tomography using deep learning and tensor regression, Am J Ophthalmol, 218, 304, 10.1016/j.ajo.2020.04.037 Nouri-Mahdavi, 2021, Prediction of visual field progression from OCT structural measures in moderate to advanced glaucoma, Am J Ophthalmol, 226, 172, 10.1016/j.ajo.2021.01.023 Fu, 2019, A deep learning system for automated angle-closure detection in anterior segment optical coherence tomography images, Am J Ophthalmol, 203, 37, 10.1016/j.ajo.2019.02.028 Xu, 2019, Deep learning classifiers for automated detection of gonioscopic angle closure based on anterior segment OCT images, Am J Ophthalmol, 208, 273, 10.1016/j.ajo.2019.08.004 Hao, 2021, Angle-closure assessment in anterior segment OCT images via deep learning, Med Image Anal, 69, 101956, 10.1016/j.media.2021.101956 Li, 2021, Automatic anterior chamber angle classification using deep learning system and anterior segment optical coherence tomography images, Transl Vis Sci Technol, 10, 19, 10.1167/tvst.10.6.19 Wanichwecharungruang, 2021, Deep learning for anterior segment optical coherence tomography to predict the presence of plateau iris, Transl Vis Sci Technol, 10, 7, 10.1167/tvst.10.1.7 Chiang, 2021, Glaucoma expert-level detection of angle closure in goniophotographs with convolutional neural networks: the Chinese American Eye Study, Am J Ophthalmol, 226, 100, 10.1016/j.ajo.2021.02.004 UK Biobank Eye and Vision Consortium, 2018, Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma, Nat Genet, 50, 778, 10.1038/s41588-018-0126-8 Burdon, 2015, Association of open-angle glaucoma loci with incident glaucoma in the Blue Mountains Eye Study, Am J Ophthalmol, 159, 10.1016/j.ajo.2014.09.020 Han, 2021, Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in > 280,000 images from UKB and CLSA, Am J Hum Genet, 108, 1204, 10.1016/j.ajhg.2021.05.005 Lee, 2020, Discriminating glaucomatous and compressive optic neuropathy on spectral-domain optical coherence tomography with deep learning classifier, Br J Ophthalmol, 104, 1717, 10.1136/bjophthalmol-2019-314330 Yang, 2020, Efficacy for differentiating non-glaucomatous versus glaucomatous optic neuropathy using deep learning systems, Am J Ophthalmol, 216, 140, 10.1016/j.ajo.2020.03.035 Spaide, 2020, Using deep learning to automate goldmann applanation tonometry readings, Ophthalmology, 127, 1498, 10.1016/j.ophtha.2020.04.033 Wu, 2020, Development and validation of a machine learning, smartphone-based tonometer, Br J Ophthalmol, 104, 1394, 10.1136/bjophthalmol-2019-315446 Lin, 2021, Assessing the clinical utility of expanded macular OCTs using machine learning, Transl Vis Sci Technol, 10, 32, 10.1167/tvst.10.6.32 Wilson, 1968, Principles and practice of screening for disease, J R Coll Gen Pract, 16, 318 Hatt, 2006, Screening for prevention of optic nerve damage due to chronic open angle glaucoma. Cochrane Eyes and Vision Group, éditeur, Cochrane Database Syst Rev [Internet], 2010, 10.1002/14651858.CD006129.pub2 Burr, 2007, The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation, Health Technol Assess [Internet], 11 Korot, 2019, A renaissance of teleophthalmology through artificial intelligence, Eye, 33, 861, 10.1038/s41433-018-0324-8 Hark, 2017, Philadelphia telemedicine glaucoma detection and follow-up study: methods and screening results, Am J Ophthalmol, 181, 114, 10.1016/j.ajo.2017.06.024 Tan, 2020, Glaucoma screening: where are we and where do we need to go?, Curr Opin Ophthalmol, 31, 91, 10.1097/ICU.0000000000000649 Williams, 2004, Single-field fundus photography for diabetic retinopathy screening, Ophthalmology, 111, 1055, 10.1016/j.ophtha.2004.02.004 Miller, 2017, Glaucoma screening in Nepal: cup-to-disc estimate with standard mydriatic fundus camera compared to portable nonmydriatic camera, Am J Ophthalmol, 182, 99, 10.1016/j.ajo.2017.07.010 Nakahara, 2021, Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone, Br J Ophthalmol Orlando, 2020, REFUGE Challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs, Med Image Anal, 59, 101570, 10.1016/j.media.2019.101570 Singh, 2020, What is the optimal attribution method for explainable ophthalmic disease classification?, 21 WHO, 2021 Miguel, 2021, Artificial intelligence to detect glaucoma through OCT angiography – a pilot study, Invest Ophthalmol Vis Sci, 62, 2166