Integrity Detection of Pile Foundation in High-rise Buildings Based on Reflected Wave Method
Tóm tắt
The existing methods cannot effectively obtain the response signals generated by multiple defects of the pile body, which leads to the inaccuracy of the pile foundation integrity detection results, a high-rise building pile foundation integrity detection method based on the reflected wave method is proposed. The continuous wavelet transform coefficient is used to locate the defect position of pile foundation. Referring to the positioning results, according to the material density and cross-sectional area of pile foundation, the cross-sectional force and reflected wave velocity at the defect of pile foundation are calculated. Because the stress wave will be affected by the defect of pile foundation, and the fluctuation of stress wave will affect the amplitude and phase, it can be concluded that the section impedance is related to the cross-sectional force and velocity of reflection wave. According to this characteristic, the integrity of pile foundation of high-rise building is detected by the amplitude and phase characteristics of reflected wave signal. The results show that the design method can accurately determine the defects of pile foundation, accurately classify the integrity of pile body, and the integrity test results of the method can meet the relevant engineering standards, which verifies the effectiveness of the method.
Từ khóa
#Condensed Matter Physics #Classical Mechanics #Industrial Chemistry/Chemical Engineering #Physical ChemistryTài liệu tham khảo
D.P. Iraklis, S. Marco, U.B. Jens, M. Magdalene, M. Yannis, C.L. Sabine, E.S. Georgios, Acta. Mech. 227, 1279–1291 (2016). https://doi.org/10.1007/s00707-015-1548-3
K.F. Lo, S.H. Ni, Y.H. Huang, L. Lehmann, J. Geoeng. 7, 69–73 (2012). https://doi.org/10.6310/jog.2012.7(2).4
H. Mohamad, W. William, E. Billy, ASCE 6, 45–67 (2015). https://doi.org/10.1016/0148-9062(94)93132-1
B. Mohsen, J.M. Ebadi, S. Bijan, Int. J. Geomech. 18, 04018103 (2018). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001222
Okwori E, Moyo P, Matongo K. (2015) 4th Int. Conf. Concr. Repa, Rehabil. Retrofit. (ICCRRR 2015) 17:16-21. https://doi.org/10.13140/RG.2.1.3182.0247
C. Zheng, G.P. Kouretzis, X. Ding, H. Liu, H.G. Poulos, J. Eng. Mech. 142, 04016064 (2007). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001117
C. Zheng, X. Ding, Y. Sun, Int. J. Geomech. 16, 04015037.1-04015037.10 (2016). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000529
J. Jiang, D.J. Liu, Z.T. Lu, J. Tao, H.X. Liu, Soil Dyn. Earthq. Eng. 67, 345–352 (2014). https://doi.org/10.1016/j.soildyn.2014.10.009
S. Lue, K. Wang, W. Wu, C.J. Leo, Comput. Geotech. 62, 90–99 (2014). https://doi.org/10.1016/j.compgeo.2014.06.015
H. Liu, C. Zheng, X. Ding, H. Qin, Comput. Geotech. 61, 57–66 (2014). https://doi.org/10.1016/j.compgeo.2014.04.006
W.B. Wu, K.H. Wang, Z.Q. Zhang, C.J. Leo, Hum/technol. Interact. Complex Syst. 16, 112–135 (2014). https://doi.org/10.1002/nag.2164
X. Ding, H. Liu, G. Kong, C. Zheng, Comput. Geotech. 58, 101–116 (2014). https://doi.org/10.1016/j.compgeo.2014.02.004
Z.T. Lu, Z.L. Wang, D.J. Liu, Soil Dyn. Earthq. Eng. 55, 255–262 (2013). https://doi.org/10.1016/j.soildyn.2013.09.021
W. Wu, G. Jiang, S. Huang, C.J. Leo, Math. Probl. Eng. 2014, 1–12 (2014). https://doi.org/10.1155/2014/126916
H.Y. Chai, K.K. Phoon, Int. J. Geomech. 13, 672–677 (2013). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000233
W.S. Zhou, F.G. Yuan, T.L. Shi, Ultrasound 65, 69–77 (2016). https://doi.org/10.1016/j.ultras.2015.10.021
Y.E. Kwon, H.W. Kim, Y.Y. Kim, Ultrasound 62, 237–243 (2015). https://doi.org/10.1016/j.ultras.2015.05.023
Z. Dworakowski, L. Ambrozinski, P. Packo, K. Dragan, T. Stepinski, Struct. Control Health Monit. 22, 50–61 (2015). https://doi.org/10.1002/stc.1659
R. Yang, J. Zuo, J. Song, S. Chen, C. Xiao, J. Vib. Shock. 37, 74–78 (2018). https://doi.org/10.13465/j.cnki.jvs.2018.14.010
J.X. Qu, Z.S. Zhang, T. Gong, Neurocomputing (2016). https://doi.org/10.1016/j.neucom.2015.07.020
Kun WX, Zou TW, Yao YD. (2016) 2016 IEEE Int. Conf. Mechatronics. Automation. https://doi.org/10.1109/ICMA.2016.7558849
W.X. Kang, J.D. Li, Y.M. Liu, Int. J. Signal Process. 76, 1–12 (2015). https://doi.org/10.14257/ijsip.2015.8.10.22
A.R. Rafieerad, A.R. Bushroa, T.B. Nasiri, S.H. Kaboli, S. Khanahmadi, A. Amiri, J. Mech. Behav. Biol. Mater. 69, 1–18 (2017). https://doi.org/10.1016/j.jmbbm.2016.11.019