Integrative approaches in genome structure analysis

Structure - Tập 30 - Trang 24-36 - 2022
Lorenzo Boninsegna1,2, Asli Yildirim1,2, Yuxiang Zhan1,2,3, Frank Alber1,2,3
1Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA 90095, USA
2Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
3Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA

Tài liệu tham khảo

Banigan, 2020, Loop extrusion: Theory meets single-molecule experiments, Curr. Opin. Cell Biol., 64, 124, 10.1016/j.ceb.2020.04.011 Barbieri, 2012, Complexity of chromatin folding is captured by the strings and binders switch model, Proc. Natl. Acad. Sci. U. S. A., 109, 16173, 10.1073/pnas.1204799109 Baù, 2011, The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules, Nat. Struct. Mol. Biol., 18, 107, 10.1038/nsmb.1936 Beagrie, 2017, Complex multi-enhancer contacts captured by genome architecture mapping, Nature, 543, 519, 10.1038/nature21411 Beliveau, 2012, Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes, Proc. Natl. Acad. Sci., 109, 21301, 10.1073/pnas.1213818110 Beliveau, 2015, Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes, Nat. Commun., 6, 7147, 10.1038/ncomms8147 Bianco, 2020, Computational approaches from polymer physics to investigate chromatin folding, Curr. Opin. Cell Biol., 64, 10, 10.1016/j.ceb.2020.01.002 Bintu, 2018, Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells, Science, 362, eaau1783, 10.1126/science.aau1783 Boettiger, 2016, Super-resolution imaging reveals distinct chromatin folding for different epigenetic states, Nature, 529, 418, 10.1038/nature16496 Boninsegna, 2021, Multi-modal data integration reveals essentiality of rare contact events in 3D genome organizations, BioRxiv Brackey, 2020, Mechanistic modeling of chromatin folding to understand function, Nat. Methods, 17, 767, 10.1038/s41592-020-0852-6 Chapski, 2019, Spatial principles of chromatin architecture associated with organ-specific gene regulation, Front. Cardiovasc. Med., 5, 186, 10.3389/fcvm.2018.00186 Chen, 2018, Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler, J. Cell Biol., 217, 4025, 10.1083/jcb.201807108 Cremer, 2012, Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes, 205 Dai, 2016, Mining 3D genome structure populations identifies major factors governing the stability of regulatory communities, Nat. Commun., 7, 11549, 10.1038/ncomms11549 Dekker, 2017, The 4D nucleome project, Nature, 549, 219, 10.1038/nature23884 Di Pierro, 2016, Transferable model for chromosome architecture, Proc. Natl. Acad. Sci. U. S. A., 113, 12168, 10.1073/pnas.1613607113 Dixon, 2012, Topological domains in mammalian genomes identified by analysis of chromatin interactions, Nature, 485, 376, 10.1038/nature11082 Falk, 2019, Heterochromatin drives compartmentalization of inverted and conventional nuclei, Nature, 570, 395, 10.1038/s41586-019-1275-3 Finn, 2019, Extensive heterogeneity and intrinsic variation in spatial genome organization, Cell, 176, 1502, 10.1016/j.cell.2019.01.020 Fudenberg, 2016, formation of chromosomal domains by loop extrusion, Cell Rep., 15, 2038, 10.1016/j.celrep.2016.04.085 Fullwood, 2009, An oestrogen-receptor-α-bound human chromatin interactome, Nature, 462, 58, 10.1038/nature08497 Giorgetti, 2014, Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription, Cell, 157, 950, 10.1016/j.cell.2014.03.025 Girelli, 2020, GPSeq reveals the radial organization of chromatin in the cell nucleus, Nat. Biotechnol., 38, 1184, 10.1038/s41587-020-0519-y Guelen, 2008, Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions, Nature, 453, 948, 10.1038/nature06947 Hildebrand, 2020, Mechanisms and functions of chromosome compartmentalization, Trends Biochem. Sci., 45, 385, 10.1016/j.tibs.2020.01.002 Hua, 2018, Producing genome structure populations with the dynamic and automated PGS software, Nat. Protoc., 13, 915, 10.1038/nprot.2018.008 Jost, 2014, Modeling epigenome folding: Formation and dynamics of topologically associated chromatin domains, Nucleic Acids Res., 42, 9553, 10.1093/nar/gku698 Kalhor, 2012, Genome architectures revealed by tethered chromosome conformation capture and population-based modeling, Nat. Biotechnol., 30, 90, 10.1038/nbt.2057 Kempfer, 2020, Methods for mapping 3D chromosome architecture, Nat. Rev. Genet., 21, 207, 10.1038/s41576-019-0195-2 Khanna, 2014, HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation, Curr. Biol., 24, 1138, 10.1016/j.cub.2014.03.053 Kim, 2019, Gene expression amplification by nuclear speckle association, J. Cell Biol., 219 Larson, 2017, Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin, Nature, 547, 236, 10.1038/nature22822 Lee, 2014, Highly multiplexed subcellular RNA sequencing in situ, Science, 343, 1360, 10.1126/science.1250212 Li, 2017, The three-dimensional genome organization of Drosophila melanogaster through data integration, Genome Biol., 18, 145, 10.1186/s13059-017-1264-5 Li, 2021, DeTOKI identifies and characterizes the dynamics of chromatin TAD-like domains in a single cell, Genome Biol., 22, 217, 10.1186/s13059-021-02435-7 Lieberman-Aiden, 2009, Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 326, 289, 10.1126/science.1181369 Lin, 2021, Multiscale modeling of genome organization with maximum entropy optimization, J. Chem. Phys., 155, 010901, 10.1063/5.0044150 Lubeck, 2014, Single-cell in situ RNA profiling by sequential hybridization, Nat. Methods, 11, 360, 10.1038/nmeth.2892 MacKay, 2020, Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data, Brief. Funct. Genomics, 19, 292, 10.1093/bfgp/elaa004 MacPherson, 2018, Bottom–up modeling of chromatin segregation due to epigenetic modifications, Proc. Natl. Acad. Sci., 115, 12739, 10.1073/pnas.1812268115 Mateo, 2019, Visualizing DNA folding and RNA in embryos at single-cell resolution, Nature, 568, 49, 10.1038/s41586-019-1035-4 Mirny, 2019, Two major mechanisms of chromosome organization, Curr. Opin. Cell Biol., 58, 142, 10.1016/j.ceb.2019.05.001 Misteli, 2010, Higher-order genome organization in human disease, Cold Spring Harb. Perspect. Biol., 2, a000794, 10.1101/cshperspect.a000794 Misteli, 2020, The self-organizing genome: principles of genome architecture and function, Cell, 183, 28, 10.1016/j.cell.2020.09.014 Nagano, 2013, Single-cell Hi-C reveals cell-to-cell variability in chromosome structure, Nature, 502, 59, 10.1038/nature12593 Nguyen, 2020, 3D mapping and accelerated super-resolution imaging of the human genome using in situ sequencing, Nat. Methods, 17, 822, 10.1038/s41592-020-0890-0 Nir, 2018, Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling, PLOS Genet., 14, e1007872, 10.1371/journal.pgen.1007872 Nora, 2012, Spatial partitioning of the regulatory landscape of the X-inactivation centre, Nature, 485, 381, 10.1038/nature11049 Nuebler, 2018, Chromatin organization by an interplay of loop extrusion and compartmental segregation, Proc. Natl. Acad. Sci. U. S. A., 115, E6697, 10.1073/pnas.1717730115 Ou, 2017, ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells, Science, 357, eaag0025, 10.1126/science.aag0025 Parmar, 2019, How the genome folds: the biophysics of four-dimensional chromatin organization, Annu. Rev. Biophys., 48, 231, 10.1146/annurev-biophys-052118-115638 Paulsen, 2017, Chrom3D: Three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts, Genome Biol., 18, 21, 10.1186/s13059-016-1146-2 Payne, 2021, In situ genome sequencing resolves DNA sequence and structure in intact biological samples, Science, 371, eaay3446, 10.1126/science.aay3446 Phillips-Cremins, 2013, Architectural protein subclasses shape 3D organization of genomes during lineage commitment, Cell, 153, 1281, 10.1016/j.cell.2013.04.053 Polles, 2019, Genome structure calculation through comprehensive data integration, 253 Qi, 2020, Polymer modeling of whole-nucleus diploid genome organization, Biophys. J., 118, 550a, 10.1016/j.bpj.2019.11.3009 Quinodoz, 2018, Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus, Cell, 174, 744, 10.1016/j.cell.2018.05.024 Rao, 2014, A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping, Cell, 159, 1665, 10.1016/j.cell.2014.11.021 Rosenthal, 2019, Bayesian estimation of three-dimensional chromosomal structure from single-cell Hi-C Data, J. Comput. Biol., 26, 1191, 10.1089/cmb.2019.0100 Sabari, 2020, Biomolecular condensates in the nucleus, Trends Biochem. Sci., 45, 961, 10.1016/j.tibs.2020.06.007 Sanborn, 2015, Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes, Proc. Natl. Acad. Sci. U. S. A., 112, E6456, 10.1073/pnas.1518552112 Serra, 2017, Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors, PLoS Comput. Biol., 13, e1005665, 10.1371/journal.pcbi.1005665 Sexton, 2012, Three-dimensional folding and functional organization principles of the drosophila genome, Cell, 148, 458, 10.1016/j.cell.2012.01.010 Solovei, 2016, How to rule the nucleus: divide et impera, Curr. Opin. Cell Biol., 40, 47, 10.1016/j.ceb.2016.02.014 Stevens, 2017, 3D structure of individual mammalian genomes studied by single cell Hi-C, Nature, 544, 59, 10.1038/nature21429 Strom, 2017, Phase separation drives heterochromatin domain formation, Nature, 547, 241, 10.1038/nature22989 Su, 2020, Genome-scale imaging of the 3D organization and transcriptional activity of chromatin, Cell, 182, 1641, 10.1016/j.cell.2020.07.032 Takei, 2021, Integrated spatial genomics reveals global architecture of single nuclei, Nature, 590, 344, 10.1038/s41586-020-03126-2 Takei, 2021, Single-cell nuclear architecture across cell types in the mouse brain, Science, 374, 586, 10.1126/science.abj1966 Tan, 2018, Three-dimensional genome structures of single diploid human cells, Science, 361, 924, 10.1126/science.aat5641 Tjong, 2016, Population-based 3D genome structure analysis reveals driving forces in spatial genome organization, Proc. Natl. Acad. Sci. U. S. A., 113, 1663, 10.1073/pnas.1512577113 Umbarger, 2011, The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation, Mol. Cell, 44, 252, 10.1016/j.molcel.2011.09.010 Vertii, 2019, Two contrasting classes of nucleolus-associated domains in mouse fibroblast heterochromatin, Genome Res., 29, 1235, 10.1101/gr.247072.118 Wang, 2016, Spatial organization of chromatin domains and compartments in single chromosomes, Science, 353, 598, 10.1126/science.aaf8084 Wutz, 2017, Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins, EMBO J., 36, 3573, 10.15252/embj.201798004 Ye, 2019, Circular trajectory reconstruction uncovers cell-cycle progression and regulatory dynamics from single-cell Hi-C maps, Adv. Sci., 6, 1900986, 10.1002/advs.201900986 Yildirim, 2018, High-resolution 3D models of Caulobacter crescentus chromosome reveal genome structural variability and organization, Nucleic Acids Res., 46, 3937, 10.1093/nar/gky141 Yildirim, 2021, Mapping the nuclear microenvironment of genes at a genome-wide scale, BioRxiv Yildirim, 2021, Uncovering the principles of genome folding by 3D chromatin modeling, 300 Yu, 2021, SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data, Nat. Methods, 18, 1056, 10.1038/s41592-021-01231-2 Zhang, 2015, Topology, structures, and energy landscapes of human chromosomes, Proc. Natl. Acad. Sci. U. S. A., 112, 6062, 10.1073/pnas.1506257112 Zhang, 2021, Multiscale and integrative single-cell Hi-C analysis with Higashi, Nat. Biotechnol., 1 Zheng, 2019, Multiplex chromatin interactions with single-molecule precision, Nature, 566, 558, 10.1038/s41586-019-0949-1 Zhou, 2019, Robust single-cell Hi-C clustering by convolution- and random-walk–based imputation, Proc. Natl. Acad. Sci. U S A, 116, 14011, 10.1073/pnas.1901423116 Zhou, 2021, The 3D genome structure of single cells, Annu. Rev. Biomed. Data Sci., 4, 21, 10.1146/annurev-biodatasci-020121-084709 Zhu, 2017, Comprehensive characterization of neutrophil genome topology, Genes Dev., 31, 141, 10.1101/gad.293910.116 Zhuang, 2021, Spatially resolved single-cell genomics and transcriptomics by imaging, Nat. Methods, 18, 18, 10.1038/s41592-020-01037-8