Tích hợp dữ liệu cảm biến từ xa và bioclimatic để dự đoán phân bố của các loài xâm lấn ở các vùng ít dữ liệu: một đánh giá về thách thức và cơ hội

Springer Science and Business Media LLC - Tập 9 - Trang 1-18 - 2020
Nurhussen Ahmed1, Clement Atzberger2, Worku Zewdie1
1Department of Remote Sensing, Ethiopian Space Science and Technology Institute (ESSTI), Entoto Observatory and Research Center, Addis Ababa, Ethiopia
2Institute for Surveying, Remote Sensing and Land Information (IVFL), University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria

Tóm tắt

Dự đoán và mô hình hóa bằng cách sử dụng các tập dữ liệu tích hợp và chuyên môn từ nhiều lĩnh vực khác nhau rất nâng cao khả năng quản lý các loài xâm lấn. Cho đến nay, đã có một số nỗ lực để dự đoán, xử lý và giảm thiểu tác động của các loài xâm lấn bằng cách sử dụng các nỗ lực cụ thể từ nhiều lĩnh vực khác nhau. Tuy nhiên, cách tiếp cận thuyết phục nhất là kiểm soát tốt hơn sự xâm nhập và mở rộng tiếp theo bằng cách tận dụng kiến thức và nguyên tắc liên ngành. Tuy nhiên, thông tin trong vấn đề này còn hạn chế và các chuyên gia từ nhiều lĩnh vực đôi khi gặp khó khăn trong việc hiểu nhau một cách tốt. Trong bối cảnh này, trọng tâm của bài đánh giá này là tổng quan về các thách thức và cơ hội trong việc tích hợp các biến sinh khí hậu, các biến cảm biến từ xa và các mô hình phân bố loài (SDM) để dự đoán các loài xâm lấn ở các vùng thiếu dữ liệu. Cơ sở dữ liệu Google Scholar đã được sử dụng để thu thập các tài liệu liên quan, được công bố từ năm 2005-2020 (15 năm), sử dụng các từ khóa như SDM, cảm biến từ xa của các loài xâm lấn, và đóng góp của cảm biến từ xa trong SDM, các biến sinh khí hậu, phân bố của các loài xâm lấn ở các vùng thiếu dữ liệu, và phân bố của các loài xâm lấn ở Ethiopia. Thông tin về đóng góp riêng của cảm biến từ xa và các tập dữ liệu sinh khí hậu cho SDM, các thách thức chính và cơ hội cho việc tích hợp cả hai tập dữ liệu đã được hệ thống thu thập, phân tích và thảo luận ở dạng bảng và hình ảnh. Một số thách thức lớn như chất lượng dữ liệu cảm biến từ xa và sự diễn giải kém của nó, phương pháp không phù hợp, lựa chọn biến kém và mô hình đã được xác định. Bên cạnh đó, việc cung cấp dữ liệu Quan sát Trái Đất (EO) với độ phân giải không gian và thời gian cao và khả năng của nó để bao phủ những khu vực lớn và khó tiếp cận với chi phí hợp lý, cũng như sự tiến bộ trong kỹ thuật tích hợp và phân tích dữ liệu cảm biến từ xa là những cơ hội. Ngoài ra, tác động của các đặc điểm cảm biến quan trọng như độ phân giải không gian và thời gian là rất quan trọng cho triển vọng nghiên cứu trong tương lai. Cũng quan trọng không kém là các nghiên cứu phân tích tác động của biến động giữa các năm của thực vật và các mô hình sử dụng đất đến SDM xâm lấn. Cần thiết một cách khẩn trương là các nguyên tắc làm việc được xác định rõ ràng để lựa chọn các biến và SDM phù hợp nhất.

Từ khóa

#tích hợp dữ liệu cảm biến từ xa #biến sinh khí hậu #mô hình phân bố loài #loài xâm lấn #nghiên cứu đa ngành #thách thức và cơ hội #dữ liệu ít #Ethiopia

Tài liệu tham khảo

Ahmadi K, Alavi SJ, Amiri GZ, Hosseini SM, Serra-Diaz JM, Svenning J (2020) The potential impact of future climate on the distribution of European yew (Taxus baccata L.) in the Hyrcanian Forest region (Iran). Int J Biometeorol. https://doi.org/10.1007/s00484-020-01922-z Amiri M, Tarkeshi M, Jafari R, Jetschke G (2020) Bioclimatic variables from precipitation and temperature records vs. remote sensing-based bioclimatic variables: which side can perform better in species distribution modeling. Ecol Inform 57(101060):1–16. https://doi.org/10.1016/j.ecoinf.2020.101060 Aranda SC, Lobo JM (2011) How well does presence-only-based species distribution modeling predict assemblage diversity? a case study of the Tenerife flora. Ecography 34:31–38. https://doi.org/10.1111/j.1600-0587.2010.06134.x Arogoundade AM, Odindi J, Mutanga O (2019) Modelling Parthenium hysterophorus invasion in KwaZulu-Natal province using remotely sensed data and environmental variables. Geocarto Int. https://doi.org/10.1080/10106049.2019.1581268 Asner GP, Knapp DE, Kennedy-bowdoin T, Jones MO, Martin RE, Boardman J, Hughes RF (2008) Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR. Remote Sens Environ 112:1942–1955. https://doi.org/10.1016/j.rse.2007.11.016 Ayanu Y, Jentsch A, Müller-Mahn D, Rettberg S, Romankiewicz C, Koellner T (2014) Ecosystem engineer unleashed: Prosopis juliflora threatening ecosystem services? Reg Environ Change 15(1):155–167. https://doi.org/10.1007/s10113-014-0616-x Bartz R, Kowarik I (2019) Assessing the environmental impacts of invasive alien plants : a review of assessment approaches. NeoBiota 43:69–99. https://doi.org/10.3897/neobiota.43.30122 Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol Model 186:251–270. https://doi.org/10.1016/j.ecolmodel.2005.01.030 Bekele K, Haji J, Legesse B, Schaffner U (2018) Economic impacts of Prosopis spp. invasions on dryland ecosystem services in Ethiopia and Kenya: evidence from choice experimental data. J Arid Environ. https://doi.org/10.1016/j.jaridenv.2018.07.001 Bellard C, Jeschke JM, Leroy B, Mace GM (2018) Insights from modeling studies on how climate change affects invasive alien species geography. Ecol Evol. https://doi.org/10.1002/ece3.4098 Beyene H, Tessema T (2015) Distribution, abundance, and socio-economic impacts of parthenium (Parthenium hysterophorus). J Poverty Investment Dev 19:22–29 Boyd DS, Foody GM (2011) An overview of recent remote sensing and GIS-based research in ecological informatics. Ecol Inform 6:25–36. https://doi.org/10.1016/j.ecoinf.2010.07.007 Bradley BA (2014) Remote detection of invasive plants: a review of spectral, textural, and phenological approaches. Biol Invasions. https://doi.org/10.1007/s10530-013-0578-9 Bradley BA, Allen JM, O’Neill MW, Wallace RD, Bargeron CT, Richburg JA, Stinson K (2018) Invasive species risk assessments need more consistent spatial abundance data. Ecosphere 9(7):e02302. https://doi.org/10.1002/ecs2.2302 Bradley BA, Fleishman E (2008) Can remote sensing of land cover improve species distribution modeling? J Biogeogr 35:1158–1159. https://doi.org/10.1111/j.1365-2699.2008.01928.x Bradley BA, Mustard JF (2006) Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecol Appl 16(3):1132–1147 Bucklin DN, Basille M, Romañach SS, Brandt LA, Mazzotti FJ, Watling JI, Mazzotti F (2016) Considerations for building climate-based species distribution models. UF/IFAS extension University of Florida WE375: 1–8. Buermann W, Saatchi S, Smith TB, Zutta BR, Chaves JA, Milá B, Graham CH (2008) Predicting species distributions across the Amazonian and Andean regions using remote sensing data. J Biogeogr. https://doi.org/10.1111/j.1365-2699.2007.01858.x Cayuela L, Golicher DJ, Newton AC, Kolb M, de Alburquerque FS, Arets EJMM, Alkemade JRM, Pérez AM (2009) Species distribution modeling in the tropics: problems, potentialities, and the role of biological data for effective species conservation. Trop Conserv Sci 2(3):319–352 Cord AF, Klein D, Gernandt DS, de la Rosa JAP, Dech S (2014) Remote sensing data can improve predictions of species richness by stacked species distribution models: a case study for Mexican pines. J Biogeogr 41:736–748. https://doi.org/10.1111/jbi.12225 Cord AF, Klein D, Mora F, Dech S (2014) Comparing the suitability of classified land cover data and remote sensing variables for modeling distribution patterns of plants. Ecol Model 272:129–140. https://doi.org/10.1016/j.ecolmodel.2013.09.011 Cord AF, Meentemeyer RK, Leitao PJ, VaclaviK T (2013) Modelling species distributions with remote sensing data: bridging disciplinary perspectives. J Biogeogr 40:2226–2227. https://doi.org/10.1111/jbi.12199 Cord A, Rodder D (2011) Inclusion of habitat availability in species distribution models through multi-temporal remote-sensing data? Ecol Appl 21(8):3285–3298 Deblauwe V, Droissart V, Bose R, Sonké B, Blach-Overgaard A, Svenning J-C, Wieringa JJ, Ramesh BR, Stévart T, Couvreur TLP (2016) Remotely sensed temperature and precipitation data improve species distribution modeling in the tropics. Global Ecol Biogeogr 25:443–454. https://doi.org/10.1111/geb.12426 Diniz Filho JAF, Ferro VG, Santos T, Nabout JC, Dobrovolski R, De Marco JP (2010) The three phases of the ensemble forecasting of niche models: geographic range and shifts in climatically suitable areas of Utetheisa ornatrix. Revista Brasileira de Entomologia 54(3):339–349 Dubula B, Tesfamichael SG, Rampedi IT (2016) Assessing the potential of remote sensing to discriminate invasive Asparagus laricinus from adjacent land cover types. Cogent Geoscience 2:1154650. https://doi.org/10.1080/23312041.2016.1154650 Elkind K, Sankey TT, Munson SM, Aslan CE (2019) Invasive buffelgrass detection using high-resolution satellite and UAV imagery on Google Earth Engine. Remote Sens Ecol Conserv. https://doi.org/10.1002/rse2.116 Engler R, Waser LT, Zimmermann NE, Schaub M, Berdos S, Ginzler C, Psomas A (2013) Combining ensemble modeling and remote sensing for mapping individual tree species at high spatial resolution. For Ecol Manage 310:64–73. https://doi.org/10.1016/j.foreco.2013.07.059 Evangelista PH, Kumar S, Stohlgren TJ, Jarnevich CS, Crall AW, Norman JB, Barnett DT (2008) Modelling invasion for a habitat generalist and a specialist plant species. Diversity Distrib 14:808–817. https://doi.org/10.1111/j.1472-4642.2008.00486.x Feilhauer H, He KS, Rocchini D (2012) Modeling species distribution using niche-based proxies derived from composite bioclimatic variables and MODIS NDVI. Remote Sens 4:2057–2075. https://doi.org/10.3390/rs4072057 Feilhauer H, Thonfeld F, Faude U, He KS, Rocchini D, Schmidtlein S (2013) Assessing floristic composition with multispectral sensors—a comparison based on monotemporal and multiseasonal field spectra. Int J Appl Earth Observ Geoinform 21:218–229. https://doi.org/10.1016/j.jag.2012.09.002 Fernández M, Hamilton H (2015) Ecological niche transferability using invasive species as a case study. PLoS ONE 10(3):e0119891. https://doi.org/10.1371/journal.pone.0119891 Fernandez M, Hamilton H, Kueppers L (2013) Characterizing uncertainty in species distribution models derived from interpolated weather station data. Ecosphere 4(5):61. https://doi.org/10.1890/ES13-00049 Fischer D, Thomas SM, Suk JE, Sudre B, Hess A, Tjaden NB, Beierkuhnlein C, Semenza JC (2013) Climate change effects on chikungunya transmission in Europe: Geospatial analysis of vector’s climatic suitability and virus’ temperature requirements. Int J Health Geographics 12(51):1–12. https://doi.org/10.1186/1476-072X-12-51 Fithian W, Elith J, Hastie T, Keith DA (2014) Special feature paper: bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol Evol. https://doi.org/10.1111/2041-210X.12242 Fritz A, Li L, Storch I, Koch B (2018) UAV-derived habitat predictors contribute strongly to understanding avian species—habitat relationships on the Eastern Qinghai-Tibetan Plateau. Remote Sens Ecol Conserv. https://doi.org/10.1002/rse2.73 Früh L, Kampen H, Kerkow A, Schaub GA, Walther D, Wieland R (2018) Modelling the potential distribution of an invasive mosquito species: comparative evaluation of four machine learning methods and their combinations. Ecol Model 388:136–144. https://doi.org/10.1016/j.ecolmodel.2018.08.011 Ge S, Everitt J, Carruthers R, Gong P, Anderson G (2006) Hyperspectral characteristics of canopy components and structure for phenological assessment. Environ Monit Assess 120:109–126. https://doi.org/10.1007/s10661-005-9052-1 Girma A, de Bie CAJM, Skidmore AK, Venus V, Bongers F (2015) Hyper-temporal SPOT-NDVI dataset parameterization captures species distributions. Int J Geographical Inform Sci. https://doi.org/10.1080/13658816.2015.1082565 Godoy O, de Lemos-Filho JP, Valladares F (2011) Invasive species can handle higher leaf temperatures under water stress than Mediterranean natives. Environ Exp Bot 71:207–214. https://doi.org/10.1016/j.envexpbot.2010.12.001 Gormley AM, Forsyth DM, Griffioen P, Lindeman M, Ramsey DSL, Scroggie MP, Woodford L (2011) Using presence-only and presence-absence data to estimate the current and potential distributions of established invasive species. J Appl Ecol 48:25–34. https://doi.org/10.1111/j.1365-2664.2010.01911.x Guisan A, Zimmermann NE, Elith J, Graham CH, Phillips S, Peterson AT (2007) What matters for predicting the occurrences of trees: techniques, data, or species’ characteristics? Ecol Monogr 77(4):615–630. https://doi.org/10.1890/06-1060.1 He KS, Bradley BA, Cord AF, Rocchini D, Tuanmu M, Schmidtlein S, Turner W, Wegmann M, Pettorelli N (2015) Will remote sensing shape the next generation of species distribution models ? Remote Sens Ecol Conserv. https://doi.org/10.1002/rse2.7 Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785 Heshmati I, Khorasani N, Shams-Esfandabad B, Riazi B (2019) Forthcoming risk of Prosopis juliflora global invasion triggered by climate change: implications for environmental monitoring and risk assessment. Environ Monit Assess 191(72):1–12. https://doi.org/10.1007/s10661-018-7154-9 Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276 Huang C-Y, Asner GP (2009) Applications of remote sensing to alien invasive plant studies. Sensors 9:4869–4889. https://doi.org/10.3390/s90604869 Hundessa N, Fufa A (2016) Distribution and socio-economic impacts of Prosopis juliflora in East Shewa and West Arsi Zones, Ethiopia. Int J African Asian Stud 24:31–41 Iluker J, Birner R, Tilahun M, Getu S (2014) A social-economic assessment of the impact of Prosopis juliflora invasion and participative management approach in the Afar Region, Ethiopia. Managing Prosopis Juliflora for Better (Agro-) Pastoral Livelihoods in the Horn of Africa 30–38. Ilukor J, Rettberg S, Treydte A, Birner R (2016) To eradicate or not to eradicate? Recommendations on Prosopis juliflora management in Afar, Ethiopia, from an interdisciplinary perspective. Pastoralism Res Policy Pract 6(14):1–8. https://doi.org/10.1186/s13570-016-0061-1 Immitzer M, Neuwirth M, Böck S, Brenner H, Vuolo F, Atzberger C (2019) Optimal Input Features for tree species classification in Central Europe Based on Multi-Temporal Sentinel-2 Data. Remote Sens 11(2599):1–23. https://doi.org/10.3390/rs11222599 Jensen T, Hass FS, Akbar MS, Petersen PH, Arsanjani JJ (2020) Employing machine learning for detection of invasive species using Sentinel-2 and AVIRIS data: the case of Kudzu in the United States. Sustainability 12(3544):1–16. https://doi.org/10.3390/SU12093544 Jones CC (2012) Challenges in predicting the future distributions of invasive plant species. For Ecol Manage 284:69–77. https://doi.org/10.1016/j.foreco.2012.07.024 Kapitza K, Zimmermann H, Martín-lópez B, Von Wehrden H (2019) Research on the social perception of invasive species: a systematic literature review. NeoBiota 43:47–68. https://doi.org/10.3897/neobiota.43.31619 Khare S, Latifi H, Rossi S, Ghosh SK (2019) Fractional cover mapping of invasive plant species by combining very high-resolution stereo and multi-sensor multispectral imageries. Forests 10(540):1–15. https://doi.org/10.3390/f10070540 Kiala Z, Mutanga O, Odindi J, Peerbhay K (2019) Feature selection on sentinel-2 multispectral imagery for mapping a landscape infested by parthenium weed. Remote Sens 11(1892):1–17. https://doi.org/10.3390/rs11161892 Kissling WD, Ahumada JA, Bowser A, Fernandez M, Fern´andez N, García EA, et al (2018) Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol Rev 93:600–625. https://doi.org/10.1111/brv.12359 Klerk H, Buchanan G (2017) Remote sensing training in African conservation. Remote Sens Ecol Conserv. https://doi.org/10.1002/rse2.36 Leitão PJ, Santos MJ (2019) Improving models of species ecological niches: a remote sensing overview. Ecol Evol Front. https://doi.org/10.3389/fevo.2019.00009 Li G, Xu G, Guo K, Du S (2014) Mapping the global potential geographical distribution of black locust (Robinia Pseudoacacia L.) using herbarium data and a maximum entropy model. Forests 5:2773–2792. https://doi.org/10.3390/f5112773 Lima TA, Beuchle R, Langner A, Grecchi RC, Griess VC, Achard F (2019) Comparing sentinel-2 MSI and landsat 8 OLI Imagery for monitoring selective logging in the Brazilian Amazon. Remote Sens 11(961):1–21. https://doi.org/10.3390/rs11080961 Loew A, Bell W, Brocca L, Bulgin CE, Burdanowitz J, Calbet X et al (2017) Validation practices for satellite-based Earth observation data across communities. Rev Geophys 55:779–817. https://doi.org/10.1002/2017RG000562 Matongera TN, Mutanga O, Dube T, Lottering RT (2016) Detection and mapping of bracken fern weeds using multispectral remotely sensed data: a review of progress and challenges. Geocarto Int. https://doi.org/10.1080/10106049.2016.1240719 Meroni M, Ng W-T, Rembold F, Leonardi U, Atzberger C, Gadain H, Shaiye M (2017) Mapping Prosopis juliflora in West Somaliland with Landsat 8 Satellite imagery and ground information. Land Degrad Dev 28:494–506. https://doi.org/10.1002/ldr.2611 Müllerová J, Bruna J, Bartalos T, Dvorak P, Vitkova M, Pyšek P (2017) Timing is important : unmanned aircraft vs. satellite imagery in plant invasion monitoring. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00887 Ng W-T, Silva ACO, Rima P, Atzberger C, Immitzer M (2018) Ensemble approach for potential habitat mapping of invasive Prosopis spp. in Turkana Kenya. Ecol Evol 8(23):1–11. https://doi.org/10.1002/ece3.4649 Ng W-T, Rima P, Einzmann K, Immitzer M, Atzberger C, Eckert S (2017) Assessing the potential of sentinel-2 and pléiades data for the detection of prosopis and vachellia spp. In Kenya. Remote Sens 9(74):1–29. https://doi.org/10.3390/rs9010074 Oumar Z (2016) Assessing the utility of the SPOT 6 sensor in detecting and mapping lantana camara for a community clearing project in KwaZulu-Natal, South Africa. South Afr J Geomatics 5(2):214–226. https://doi.org/10.4314/sajg.v5i2.9 Ouyang Z-T, Gao Y, Xie X, Guo H-Q, Zhang T-T, Zhao B (2013) Spectral discrimination of the invasive plant spartina alterniflora at multiple phenological stages in a saltmarsh wetland. PLoS ONE 8(6):e67315. https://doi.org/10.1371/journal.pone.0067315 Paz-Kagan T, Silver M, Panov N, Karnieli A (2019) Multispectral approach for identifying invasive plant species based on flowering phenology characteristics. Remote Sens 11(953):1–18. https://doi.org/10.3390/rs11080953 Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 Piiroinen R, Fassnacht FE, Heiskanen J, Maeda E, Mack B, Pellikka P (2018) Invasive tree species detection in the Eastern Arc Mountains biodiversity hotspot using one-class classification. Remote Sens Environ 218:119–131. https://doi.org/10.1016/j.rse.2018.09.018 Prates-Clark C, Saatchi SS, Agosti D (2008) Predicting geographical distribution models of high-value timber trees in the Amazon Basin using remotely sensed data. Ecol Model 211:309–323. https://doi.org/10.1016/j.ecolmodel.2007.09.024 Rajah P, Odindi J, Mutanga O (2018) Evaluating the potential of freely available multispectral remotely sensed imagery in mapping American bramble (Rubus cuneifolius). S Afr Geogr J. https://doi.org/10.1080/03736245.2018.1461683 Rajah P, Odindi J, Mutanga O, Kiala Z (2019) The utility of Sentinel-2 Vegetation Indices (VIs) and Sentinel-1 Synthetic Aperture Radar (SAR) for invasive alien species detection and mapping. Nat Conserv 35:41–61. https://doi.org/10.3897/natureconservation.35.29588 Re D, Tordoni E, De Pascalis F, Negrı´n-Pe´rez Z, Ferna´ndez-Palacios J, Are´valo J, et al (2020) Invasive fountain grass (Pennisetum setaceum (Forssk) increases its potential area of distribution in Tenerife island under future climatic scenarios. Plant Ecol. https://doi.org/10.1007/s11258-020-01046-9 Richter K, Atzberger C, Hank TB, Mauser W (2012) Derivation of biophysical variables from Earth observation data: validation and statistical measures. Appl Remote Sens 6:1–24. https://doi.org/10.1117/1.JRS.6.063557 Rocchini D, Boyd DS, Feret J-B, Foody GM, He KS, Lausch A, Nagendra H, Wegmann M, Pettorelli N (2015) Satellite remote sensing to monitor species diversity: potential and pitfalls. Remote Sens Ecol Conserv. https://doi.org/10.1002/rse2.9 Rocchini D, Andreo V, Forster M, Garzon-lopez CX, Gutierrez AP, Gillespie TW (2015) Potential of remote sensing to predict species invasions: a modeling perspective. Prog Phys Geogr 39(3):283–309. https://doi.org/10.1177/0309133315574659 Royimani L, Mutanga O, Odindi J, Dube T (2018) Advancements in satellite remote sensing for mapping and monitoring of alien invasive plant species (AIPs). Phys Chem Earth. https://doi.org/10.1016/j.pce.2018.12.004 Saatchi S, Buermann W, Steege H, Mori S, Smith TB (2008) Modeling distribution of Amazonian tree species and diversity using remote sensing measurements. Remote Sens Environ 112:2000–2017. https://doi.org/10.1016/j.rse.2008.01.008 Sakate DM, Kashid DN (2016) A new robust model selection method in GLM with application to ecological data. Environ Syst Res 5(9):1–8. https://doi.org/10.1186/s40068-016-0060-7 Sankey TT, Mcvay J, Swetnam TL, Mcclaran MP, Heilman P, Nicholas M (2017) UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring. Remote Sens Ecol Conserv. https://doi.org/10.1002/rse2.44 Shackleton RT, Le Maitre DC, Van Wilgen BW, Richardson DM (2015) The impact of invasive alien Prosopis species (mesquite) on native plants in different environments in South Africa. South Afr J Botany 97:25–31. https://doi.org/10.1016/j.sajb.2014.12.008 Shackleton RT, Le Maitre DC, Pasiecznik NM, Richardson DM (2014) Prosopis: A global assessment of the biogeography, benefits, impacts and management of one of the world’s worst woody invasive plant taxa. AoB PLANTS 6: plu027. https://doi.org/10.1093/aobpla/plu027 Shiferaw W, Demissew S, Bekele T (2018) Invasive alien plant species in Ethiopia: ecological impacts on biodiversity a review paper. Int J Mol Biol 3(4):169–176 Shiferaw H, Schaffner U, Bewket W, Alamirew T, Zeleke G, Teketay D, Eckert S (2019a) Modelling the current fractional cover of an invasive alien plant and drivers of its invasion in a dryland ecosystem. Sci Rep 9(1576):1–12. https://doi.org/10.1038/s41598-018-36587-7 Shiferaw H, Bewket W, Alamirew T, Zeleke G, Teketay D, Bekele K, Schaffner U, Eckert S (2019b) Implications of land use/land cover dynamics and Prosopis invasion on ecosystem service values in Afar Region, Ethiopia. Sci Total Environ 675:354–366. https://doi.org/10.1016/j.scitotenv.2019.04.220 Shiferaw H, Bewket W, Eckert S (2019c) Performances of machine learning algorithms for mapping fractional cover of an invasive plant species in a dryland ecosystem. Ecol Evol. https://doi.org/10.1002/ece3.4919 Shoko C, Mutanga O (2017) Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species. ISPRS J Photogrammetry Remote Sens 129:32–40. https://doi.org/10.1016/j.isprsjprs.2017.04.016 Singh K, Forbes A, Akombelwa M (2013) The Evaluation of high-resolution aerial imagery for monitoring of bracken fern. South Afr J Geomatics 2(4):296–308 Sintayehu DW, Dalle G, Bobasa AF (2020) Impacts of climate change on current and future invasion of Prosopis juliflora in Ethiopia: environmental and socio-economic implications. Heliyon 6:e04596. https://doi.org/10.1016/j.heliyon.2020.e04596 Somers B, Asner GP (2012) Hyperspectral time series analysis of native and invasive species in hawaiian rainforests. Remote Sens 4:2510–2529. https://doi.org/10.3390/rs4092510 Sun Y, Müller-schärer H, Maron JL, Schaffner U (2015) Origin matters : diversity affects the performance of alien invasive species but not of native species. Am Nat 185(6):725–736. https://doi.org/10.1086/681251 Taddese H (2014) Suitability analysis for Jatropha curcas production in Ethiopia—a spatial modeling approach. Environ Syst Res 3:25. https://doi.org/10.1186/s40068-014-0025-7 Tamiru G (2017) Invasive alien weed species distribution, impacts on agriculture, challenge, and reaction in ethiopia: a review. J Biol Agric Healthcare 7(7):136–146 Thamaga KH, Dube T (2018a) Remote sensing of invasive water hyacinth (Eichhornia crassipes): a review on applications and challenges. Remote Sens Appl Soc Environ. https://doi.org/10.1016/j.rsase.2018.02.005 Thamaga KH, Dube T (2018b) Testing two methods for mapping water hyacinth (Eichhornia crassipes) in the Greater Letaba river system, South Africa: discrimination and mapping potential of the polar-orbiting Sentinel-2 MSI and Landsat 8 OLI sensors. Int J Remote Sens. https://doi.org/10.1080/01431161.2018.1479796 Tola J, Tessema T (2019) Abundance and distribution of invasive alien plant species in Illu Ababora Zone abundance and distribution of invasive alien plant species in Illu Ababora Zone of Oromia National Regional State, Ethiopia. J Agric Sci Food Technol 1(7):94–100 Transon J, Andrimont R, Maugnard A, Defourny P (2018) Survey of hyperspectral earth observation applications from space in the sentinel-2 context. Remote Sens 10(157):1–32. https://doi.org/10.3390/rs10020157 Tricarico E (2016) Do alien invasive species and climate change foster conservation behavior ? Aquatic Conserv: Mar. Freshw Ecosyst 26:228–232. https://doi.org/10.1002/aqc.2637 Truong TTA, Hardy G, Andrew ME (2017) Contemporary remotely sensed data products refine invasive plants risk mapping in data-poor regions. Front Plant Sci 8:1–18. https://doi.org/10.3389/fpls.2017.00770 Tuanmu M-N, Jetz W (2014) A global 1-km consensus land-cover product for biodiversity and ecosystem modeling. Global Ecol Biogeogr 23(9):1–15. https://doi.org/10.1111/geb.12182 Urbina-Cardona N, Blair ME, London MC, Loyola R, Vela´squez-Tibata J, Morales-Devia H, (2019) Species distribution modeling in Latin America: a 25-year retrospective review. Trop Conserv Sci 12:1–19. https://doi.org/10.1177/1940082919854058 Václavík T, Meentemeyer K (2012) Equilibrium or not? Modelling the potential distribution of invasive species in different stages of invasion. Diversity Distrib 18:73–83 Vega GC, Pertierra LR, Olalla-tárraga MÁ (2017) Data descriptor: MERRAclim, a high-resolution global dataset of remotely sensed bioclimatic variables for ecological modeling. Sci Data. https://doi.org/10.1038/sdata.2017.78 Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities, and ecosystems. Ecol Lett 14:702–708. https://doi.org/10.1111/j.1461-0248.2011.01628.x Vuolo F, Neuwirth M, Immitzer M, Atzberger C, Ng W-T (2018) How much does multi-temporal Sentinel-2 data improve crop type classification ? Int J Appl Earth Obs Geoinformation 72:122–130. https://doi.org/10.1016/j.jag.2018.06.007 Wakie TT, Evangelista PH, Jarnevich CS, Laituri M (2014) Mapping current and potential distribution of non-native Prosopis juliflora in the Afar region of Ethiopia. PLoS ONE 9(11):3–11. https://doi.org/10.1371/journal.pone.0112854 Wakjira M (2011) An invasive alien weed giant sensitive plant (Mimosa diplotricha Sauvalle) invading Southwestern Ethiopia. Afr J Agric Res 6(1):127–131. https://doi.org/10.5897/AJAR10.421 Wessel M, Brandmeier M, Tiede D (2018) Evaluation of different machine learning algorithms for scalable classification of tree types and tree species based on sentinel-2 data. Remote Sens 10(1419):1–21. https://doi.org/10.3390/rs10091419 West AM, Wakie T, Evangelista PH (2014). Mapping distribution and forecasting invasion of mesquite (Prosopis juliflora) in Ethiopia Ecological Forecasting Issue December):1–18 Wilson JW, Sexton JO, Todd Jobe R, Haddad NM (2013) The relative contribution of terrain, land cover, and vegetation structure indices to species distribution models. Biol Cons 164:170–176. https://doi.org/10.1016/j.biocon.2013.04.021 Xie Y, Sha Z, Yu M (2008) Remote sensing imagery in vegetation mapping : a review. J Plant Ecol 1(1):9–23. https://doi.org/10.1093/jpe/rtm005 Zhao M, Peng C, Xiang W, Deng X, Tian D, Zhou X, Yu G, He H, Zhao Z (2013) Plant phenological modeling and its application in global climate change research: overview and future challenges. Environ Rev 21:1–14. https://doi.org/10.1139/er-2012-0036 Zimmermann NE, Edwards TC Jr, Moisen GG, Frescino TS, Blackard JA (2007) Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. J Appl Ecol 44:1057–1067. https://doi.org/10.1111/j.1365-2664.2007.01348.x