Tích hợp công nghệ chuyển đổi điện năng thành hydro trong bài toán cam kết đơn vị chịu ràng buộc an ninh với tỷ lệ gió cao

Journal of Modern Power Systems and Clean Energy - Tập 5 - Trang 337-349 - 2017
Mingfei BAN1,2, Jilai YU1, Mohammad SHAHIDEHPOUR2, Yiyun YAO2
1School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, China
2Robert W. Galvin Center for Electricity Innovation, Illinois Institute of Technology, Chicago, USA

Tóm tắt

Sự tích hợp ngày càng tăng của nguồn gió biến động đã làm trầm trọng thêm sự mất cân bằng giữa cung và cầu điện. Công nghệ chuyển đổi điện năng thành hydro (P2H) là một giải pháp hứa hẹn để cân bằng cung cầu trong lưới điện biến động, trong đó năng lượng gió dư thừa được chuyển hóa thành hydro qua quá trình điện phân và được lưu trữ để sử dụng sau này. Trong nghiên cứu này, một trung tâm năng lượng (EH) với cả cơ sở P2H (máy điện phân) và cơ sở chuyển đổi khí thành điện (G2P) (tuabin khí hydro) được đề xuất nhằm tiếp nhận tỷ lệ cao của năng lượng gió. EH được xây dựng mô hình và tích hợp vào bài toán cam kết đơn vị chịu ràng buộc an ninh (SCUC), và bài toán tối ưu hóa này được giải quyết bằng phương pháp lập trình tuyến tính nguyên hỗn hợp (MILP) cùng với kỹ thuật phân tách Benders. Các nghiên cứu tình huống đã được trình bày để xác thực mô hình đề xuất và làm rõ tiềm năng công nghệ của việc tích hợp P2H vào hệ thống điện có tỷ lệ gió cao (HWP).

Từ khóa

#công nghệ chuyển đổi điện năng thành hydro #hệ thống năng lượng #cam kết đơn vị #năng lượng gió #tối ưu hóa #lập trình tuyến tính nguyên hỗn hợp.

Tài liệu tham khảo

Wang X, Jiang CW, Li BS (2016) Active robust optimization for wind integrated power system economic dispatch considering hourly demand response. Renew Energy 97:798–808 Valipour M, Sefidkouhi MA, Raeini−Sarjaz M M (2017) Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agric Water Manag 180:50–60 Wang X, Gong Y, Jiang CW (2015) Regional carbon emission management based on probabilistic power flow with correlated stochastic variables. IEEE Trans Power Syst 30(2):1094–1103 Kamalinia S, Shahidehpour M (2010) Generation expansion planning in wind-thermal power systems. IET Gener Transm Distrib 4(8):940–951 Chowdhury M, Rao M, Zhao Y et al (2016) Benefits of storage control for wind power producers in power markets. IEEE Trans Sustain Energy 7(4):1492–1505 Fang X, Li F, Wei Y et al (2016) Strategic scheduling of energy storage for load serving entities in locational marginal pricing market. IET Gener Transm Distrib 10(5):1258–1267 Shahidehpour M, Shao CC, Wang XF et al (2017) An MILP-based optimal power flow in multi-carrier energy systems. IEEE Trans Sustain Energy 8(1):239–248 Geidl M, Koeppel G, Favre-Perrod P et al (2007) Energy hubs for the future. IEEE Power Energy Mag 5(1):24–30 Shao CC, Wang XF, Wang XL et al (2014) Cooperative dispatch of wind generation and electric vechicles with battery storage capacity constraints in SCUC. IEEE Trans Smart Grid 5(5):2219–2226 Amini MH, Kargarian A, Karabasoglu O (2016) ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation. Electr Power Syst Res 140:378–390 Shi XY, Ma ZJ (2016) An efficient game for vehicle-to-grid coordination problems in smart grids. Int J Syst Sci 16:2686–2701 Wang SY, Yu JL (2012) Optimal sizing of the CAES system in a power system with high wind power penetration. Int J Electr Power Energy Syst 37(1):117–125 Khodayar ME, Shahidehpour M, Wu L (2013) Enhancing the dispatchability of variable wind generation by coordination with pumped-storage hydro units in stochastic power systems. IEEE Trans Power Syst 28(3):2808–2818 Kamalinia S, Wu L, Shahidehpour M (2014) Stochastic midterm coordination of hydro and natural gas flexibilities for wind energy integration. IEEE Trans Sustain Energy 5(4):1070–1079 Schiebahn S, Grube T, Robinius M et al (2015) Power to gas: technological overview, systems analysis and economic assessment for a case study in Germany. Int J Hydrogen Energy 40(12):4285–4294 Bensmann B, Hanke-Rauschenbach R, Müller-Syring G et al (2016) Optimal configuration and pressure levels of electrolyzer plants in context of power-to-gas applications. Appl Energy 167:107–124 Walker SB, Mukherjee U, Fowler M et al (2016) Bench-marking and selection of power-to-gas utilizing electrolytic hydrogen as an energy storage alternative. Int J Hydrogen Energy 41(19):7717–7731 Gahleitner G (2013) Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. Int J Hydrogen Energy 38(5):2039–2061 Estermann T, Newborough M, Sterner M (2016) Power-to-gas systems for absorbing excess solar power in electricity distribution networks. Int J Hydrogen Energy 41(32):13950–13959 Mendaza IDC, Bhattarai BP, Kouzelis K et al (2015) Optimal sizing and placement of power-to-gas systems in future active distribution networks. In: Proceedings of the 2015 IEEE innovative smart grid technologies-Asia, Bangkok, Thailand, 3–6 Nov 2015, 1–6 Clegg S, Mancarella P (2015) Integrated modeling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas transmission networks. IEEE Trans Sustain Energy 6(4):1234–1244 Zoss T, Dace E, Blumberga D (2016) Modeling a power-to-renewable methane system for an assessment of power grid balancing options in the Baltic States′ region. Appl Energy 170:278–285 Baumann C, Schuster R, Moser A (2013) Economic potential of power-to-gas energy storages. In: Proceedings of the 2013 international conference on the European energy market, Stockholm, Sweden, 27–31 May 2013, 6 pp Clegg S, Mancarella P (2016) Storing renewables in the gas network: modelling of power-to-gas seasonal storage flexibility in low-carbon power systems. IET Gener Transm Distrib 10(3):566–575 Götz M, Lefebvre J, Mörs F et al (2016) Renewable power-to-gas: a technological and economic review. Renew Energy 85:1371–1390 Mukherjee U, Walker S, Maroufmashat A et al (2016) Power-to-gas to meet transportation demand while providing ancillary services to the electrical grid. In: Proceedings of the 2016 IEEE smart energy grid engineering, Oshawa, ON, Canada, 21–24 Aug 2016, 221–225 Guandalini G, Campanari SRM (2014) Comparison of gas turbines and power-to-gas plants for improved wind park energy dispatchability. In: Proceedings of the 2014 ASME turbo expo: turbine technical conference and exposition, Düsseldorf, Germany, 16–20 June 2014, 11 pp Guandalini G, Campanari S, Romano MC (2015) Power-to-gas plants and gas turbines for improved wind energy dispatchability: energy and economic assessment. Appl Energy 147:117–130 Zhang X, Shahidehpour M, Alabdulwahab A et al (2015) optimal expansion planning of energy hub with multiple energy infrastructures. IEEE Trans Smart Grid 6(5):2302–2311 Kienzle F, Ahčin P, Andersson G (2011) Valuing investments in multi-energy conversion, storage, and demand-side management systems under uncertainty. IEEE Trans Sustain Energy 2(2):194–202 Haddadian G, Khalili N, Khodayar M et al (2015) Security-constrained power generation scheduling with thermal generating units, variable energy resources, and electric vehicle storage for V2G deployment. Int J Electr Power Energy Syst 73:498–507 Rebennack S (2016) Combining sampling-based and scenario -based nested Benders decomposition methods: application to stochastic dual dynamic programming. Math Program 156(1):343–389 Wang JH, Shahidehpour M, Li ZY (2008) Security-constrained unit commitment with volatile wind power generation. IEEE Trans Power Syst 23(3):1319–1327 Carrión M, Arroyo JM (2006) A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Trans Power Syst 21(3):1371–1378 Gobbato P, Masi M, Toffolo A et al (2011) Numerical simulation of a hydrogen fueled gas turbine combustor. Int J Hydrogen Energy 36(13):7993–8002 Qadrdan M, Abeysekera M, Chaudry M et al (2015) Role of power-to-gas in an integrated gas and electricity system in Great Britain. Int J Hydrogen Energy 40(17):5763–5775 Fu Y, Shahidehpour M, Li ZY (2005) Security-constrained unit commitment with AC constraints. IEEE Trans Power Syst 20(2):1001–1013 Römisch W (2009) Scenario reduction techniques in stochastic programming. In: Proceeding of the 2009 Stochastic algorithms: foundations and applications: international symposium, SAGA, Sapporo, Japan, 26–28 October 2009, 1–14 Liu C, Shahidehpour M, Wu L (2010) Extended benders decomposition for two-stage SCUC. IEEE Trans Power Syst 25(2):1192–1194 Fang X, Li F, Wei Y et al (2015) Reactive power planning under high penetration of wind energy using Benders decomposition. IET Gener Transm Distrib 9(14):1835–1844 Budny C, Madlener R, Hilgers C (2015) Economic feasibility of pipe storage and underground reservoir storage options for power-to-gas load balancing. Energy Convers Manag 102:258–266 Luo X, Wang JH, Dooner M et al (2015) Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 137(6):511–536 Zhang XP, Shahidehpour M, Alabdulwahab AS et al (2015) Security-constrained co-optimization transportation infrastructures. IEEE Trans Power Syst 30(6):2984–2993 Liu C, Shahidehpour M, Fu Y et al (2009) Security-constrained unit commitment with natural gas transmission constraints. IEEE Trans Power Syst 24(3):1523–1536 Liu C, Lee C, Shahidehpour M (2015) Look ahead robust scheduling of wind-thermal system with considering natural gas congestion. IEEE Trans Power Syst 30(1):544–545 Shahidehpour M, Yong Fu, Wiedman T (2005) Impact of natural gas infrastructure on electric power systems. Proc IEEE 93(5):1042–1056 Alabdulwahab AS, Abusorrah A, Zhang XP et al (2015) Coordination of interdependent natural gas and electricity infrastructures for firming the variability of wind energy in stochastic day-ahead scheduling. IEEE Trans Sustain Energy 6(2):606–615