Integration of perovskite type Bi2MoO6 nanosheets onto one dimensional CdS: a type-II heterostructured photocatalytic system for efficient charge separation in the hydrogen evolution reaction

Inorganic Chemistry Frontiers - Tập 7 Số 15 - Trang 2818-2832
Rama Krishna Chava1,2,3,4,5, Namgyu Son1,2,3,4,5, Yang Soo Kim6,7,4, Misook Kang1,2,3,4,5
1College of Natural Sciences
2Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk-38541, Republic of Korea
3Gyeongsan
4Republic of Korea
5Yeungnam University
6Daejeon-34133
7Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon-34133, Republic of Korea

Tóm tắt

Bi2MoO6 nanosheets were assembled onto CdS nanorods and the resultant CdS-Bi2MoO6 core–shell heterostructures were utilized for efficient H2 evolution reaction.

Từ khóa


Tài liệu tham khảo

Esswein, 2007, Chem. Rev., 107, 4022, 10.1021/cr050193e

Kudo, 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G

Cao, 2020, Trends Chem., 2, 57, 10.1016/j.trechm.2019.06.009

Gust, 2009, Acc. Chem. Res., 42, 1890, 10.1021/ar900209b

Osterloh, 2013, Chem. Soc. Rev., 42, 2294, 10.1039/C2CS35266D

Chen, 2017, Nat. Rev. Mater., 2, 17050, 10.1038/natrevmats.2017.50

Ye, 2019, Adv. Mater., 31, 1902069, 10.1002/adma.201902069

Zhu, 2012, J. Am. Chem. Soc., 134, 11701, 10.1021/ja303698e

Cao, 2014, J. Phys. Chem. Lett., 5, 2101, 10.1021/jz500546b

Wang, 2019, Adv. Mater., 31, 903404

Sun, 2018, Adv. Mater., 30, 1804368, 10.1002/adma.201804368

Chava, 2019, J. Mater. Chem. A, 7, 13614, 10.1039/C9TA03059J

Wang, 2013, Nanoscale, 5, 8326, 10.1039/c3nr01577g

Li, 2015, Adv. Funct. Mater., 25, 998, 10.1002/adfm.201401636

Chava, 2018, ACS Sustainable Chem. Eng., 6, 6445, 10.1021/acssuschemeng.8b00249

Xiang, 2016, ChemSusChem, 9, 996, 10.1002/cssc.201501702

Wang, 2017, Nano Res., 10, 2699, 10.1007/s12274-017-1473-y

Guan, 2018, Chem. Sci., 9, 1574, 10.1039/C7SC03928J

Zhou, 2016, J. Mater. Chem. A, 4, 5282, 10.1039/C6TA00325G

Liu, 2018, Appl. Catal., B, 234, 109, 10.1016/j.apcatb.2018.04.037

Yuan, 2018, Int. J. Hydrogen Energy, 43, 20408, 10.1016/j.ijhydene.2018.09.161

Ma, 2019, Dalton Trans., 48, 12009, 10.1039/C9DT02028D

Zhang, 2019, Appl. Catal., B, 250, 313, 10.1016/j.apcatb.2019.03.055

Cai, 2017, J. Mater. Chem. A, 5, 16412, 10.1039/C7TA02077E

Li, 2019, Inorg. Chem. Front., 6, 3215, 10.1039/C9QI00950G

Lv, 2018, ACS Sustainable Chem. Eng., 6, 696, 10.1021/acssuschemeng.7b03032

Jia, 2019, Sci. Rep., 9, 7636, 10.1038/s41598-019-42973-6

Li, 2017, Environ. Sci.: Nano, 4, 1155

Zhang, 2018, ACS Sustainable Chem. Eng., 6, 10714, 10.1021/acssuschemeng.8b02040

Shi, 2018, Adv. Mater., 30, 1705941, 10.1002/adma.201705941

Maczka, 2008, Appl. Phys. Lett., 92, 112911, 10.1063/1.2896312

Maczka, 2008, Phys. Rev. B, 77, 094137, 10.1103/PhysRevB.77.094137

Jing, 2019, Appl. Catal., B, 243, 10, 10.1016/j.apcatb.2018.10.027

Kumar, 2017, Appl. Catal., B, 212, 7, 10.1016/j.apcatb.2017.04.065

Zhang, 2019, Inorg. Chem., 58, 6410, 10.1021/acs.inorgchem.9b00627

Kumar, 2018, Appl. Catal., B, 224, 230, 10.1016/j.apcatb.2017.10.051

Mishra, 2015, ACS Appl. Mater. Interfaces, 7, 14303, 10.1021/acsami.5b02816

Park, 2019, NPG Asia Mater., 11, 8, 10.1038/s41427-019-0107-0

Gröttrup, 2017, Ceram. Interfaces, 43, 14915, 10.1016/j.ceramint.2017.08.008

Smazna, 2019, J. Environ. Chem. Eng., 7, 103016, 10.1016/j.jece.2019.103016

Wang, 2019, Adv. Mater., 31, 1903404, 10.1002/adma.201903404

Cao, 2018, Adv. Funct. Mater., 28, 1800136, 10.1002/adfm.201800136

Kumar, 2018, ACS Appl. Mater. Interfaces, 10, 26153, 10.1021/acsami.8b02093

Kumar, 2017, ACS Sustainable Chem. Eng., 5, 7651, 10.1021/acssuschemeng.7b00978