Tích hợp nhiều chỉ số hạn hán bằng phương pháp kết hợp ba chiều

Springer Science and Business Media LLC - Tập 36 - Trang 1177-1195 - 2021
Jongjin Baik1, Jongmin Park2, Yuefeng Hao3, Minha Choi4
1Chung-Ang University, Seoul, Republic of Korea
2University Space Research Association, Columbia, USA
3Department of Water Resources, Graduate School of Water Resources, Sungkyunkwan University, Seobu-ro, Suwon, Republic of Korea
4School of Civil, Architectural Engineering and Landscape Architecture, Sungkyunkwan University, Seobu-ro, Suwon, Republic of Korea

Tóm tắt

Ba chỉ số hạn hán (Chỉ số lượng mưa chuẩn hóa [SPI], Chỉ số căng thẳng bốc hơi [ESI] và Chỉ số bất thường độ ẩm đất [SMAI]) đã được tích hợp bằng cách sử dụng phương pháp kết hợp ba chiều (TC) để sản xuất chỉ số hạn hán tổng hợp (MDI). Chỉ số mới này sau đó được so sánh với chỉ số mức độ hạn hán (DSI) từ nghiệm trọng GRACE, là một chỉ số hạn hán toàn diện phản ánh sự biến động trữ lượng nước ở bề mặt, dưới bề mặt và mức nước ngầm trên khắp Đông Á và Úc từ năm 2003 đến 2014. Trước khi hợp nhất ba chỉ số hạn hán, hiệu suất của chúng đã được phân tích. Mối tương quan trung bình giữa ba chỉ số hạn hán và DSI-GRACE cho thấy hiệu suất của ESI vượt trội hơn SMAI và SPI ở các khu vực nghiên cứu. Về kết quả trọng số trung bình khi sử dụng phương pháp kết hợp, ESI có trọng số lớn hơn (0,372 và 0,359) và những đóng góp (43% và 38%), tiếp theo là SMAI và SPI cho Đông Á và Úc, tương ứng. SMAI đạt được trọng số tương tự (0,360) và đóng góp (39%) như ESI trên toàn Australia. Để xác định độ tin cậy của MDI như được ước tính bởi trọng số TC, chúng tôi đã đánh giá MDI và DSI-GRACE tham chiếu với các tài liệu về hạn hán được ghi nhận ở các khu vực nghiên cứu. MDI tạo ra các xu hướng tương tự như DSI-GRACE ở Australia, trong khi xu hướng MDI và DSI-GRACE không tương tự ở Đông Á. Mối tương quan giữa MDI và DSI-GRACE ở Australia (0,41–0,62) cũng cao hơn ở Đông Á (0,24–0,32) trong suốt thời gian nghiên cứu. Sự khác biệt này là do sự khác biệt về khái niệm, trong đó MDI phản ánh biến động trữ lượng nước gần mặt đất trong khi DSI-GRACE phản ánh biến động của nước sâu hơn. Tuy nhiên, kết quả của chúng tôi cho thấy MDI vượt trội hơn so với các chỉ số hạn hán đơn lẻ và có khả năng nắm bắt các sự kiện hạn hán đã được ghi nhận trên các vùng nghiên cứu. Điều này cho thấy việc tích hợp các chỉ số hạn hán khác nhau vào một công cụ duy nhất có thể đại diện tốt hơn cho các hiện tượng hạn hán và có thể là một phương pháp quý giá cho quản lý tài nguyên nước.

Từ khóa

#chỉ số hạn hán #tích hợp #phương pháp kết hợp ba chiều #nước ngầm #quản lý tài nguyên nước

Tài liệu tham khảo

AghaKouchak A, Feldman D, Hoerling M, Huxman T, Lund J (2015) Recognize anthropogenic drought. Nature 524(7566):409–4011. https://doi.org/10.1038/524409a Alemohammad S, McColl K, Konings A, Entekhabi D, Stoffelen A (2015) Characterization of precipitation product errors across the US using multiplicative triple collocation. Hydrol Earth Syst Sci 12:2527–2559. https://doi.org/10.5194/hessd-12-2527-2015 Anderson MC, Hain C, Wardlow B, Pimstein A, Mecikalski JR, Kustas WP (2011) Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. J Clim 24(8):2025–2044 Anderson MC, Zolin CA, Sentelhas PC, Hain CR, Semmens K, Yilmaz MT, Tetrault R (2016) The evaporative stress index as an indicator of agricultural drought in Brazil: an assessment based on crop yield impacts. Remote Sens Environ 174:82–99 Baik J, Zohaib M, Kim U, Aadil M, Choi M (2019) Agricultural drought assessment based on multiple soil moisture products. J Arid Environ 167:43–55 Barriopedro D, Gouveia CM, Trigo RM, Wang L (2012) The 2009/2010 drought in China: possible causes and impacts on vegetation. J Hydrometeorol 13(4):1251–1267 Beard G, Chandler E, Watkins AB, Jones DA (2011) How does the 2010–11 La Niña compare with past La Niña events. Bull Aust Meteorol Oceanogr Soc 24:17–20 Bergman KH, Sabol P, Miskus D (1988) Experimental indices for monitoring global drought conditions. In Proceedings of the 13th annual climate diagnostics workshop, Cambridge, MA, USA (Vol. 31, pp. 190–197). Chen F, Crow WT, Bindlish R, Colliander A, Burgin MS, Asanuma J, Aida K (2018) Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple collocation. Remote Sens Environ 214:1–13 Choi M, Jacobs JM, Anderson MC, Bosch DD (2013) Evaluation of drought indices via remotely sensed data with hydrological variables. J Hydrol 476:265–273 Dai A (2011) Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J Geophys Res Atmos 116:D12115. https://doi.org/10.1029/2010JD015541 Dong J, Lei F, Wei L (2020) Triple collocation based multi-source precipitation merging. Front Water 2:1. https://doi.org/10.3389/frwa Dorigo WA, Wagner W, Albergel C, Albrecht F, Balsamo G, Brocca L, Chung D, Ertl M, Forkel M, Gruber A, Haas E, Hamer DP, Hirschi M, Ikonen J, De Jeu R, Kidd R, Lahoz W, Liu YY, Miralles D, Lecomte P (2017) ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens Environ 203:185–215 Gao H, Yang S (2009) A severe drought event in northern China in winter 2008–2009 and the possible influences of La Niña and Tibetan Plateau. J Geophys Res 114:D24104. https://doi.org/10.1029/2009JD012430 Gruber A, Dorigo WA, Crow W, Wagner W (2017) Triple collocation-based merging of satellite soil moisture retrievals. IEEE Trans Geosci Remote Sens 55(12):6780–6792 Gruber A, Scanlon T, van der Schalie R, Wagner W, Dorigo W (2019) Evolution of the ESA CCI soil moisture climate data Records and their underlying merging methodology. Earth Syst Sci Data 11:717–739. https://doi.org/10.5194/essd-11-717-2019 Hao Z, AghaKouchak A (2013) Multivariate standardized drought index: a parametric multi-index model. Adv Water Resour 57:12–18 Hao C, Zhang J, Yao F (2015) Combination of multi-sensor remote sensing data for drought monitoring over Southwest China. Int J Appl Earth Obs Geoinf 35:270–283 Hao Z, Hong Y, Xia Y, Singh VP, Hao F, Cheng H (2016) Probabilistic drought characterization in the categorical form using ordinal regression. J Hydrol 535:331–339 Hosseini-Moghari SM, Araghinejad S, Ebrahimi K, Tang Q, AghaKouchak A (2020) Using GRACE satellite observations for separating meteorological variability from anthropogenic impacts on water availability. Sci Rep 10(1):1–12 Jiang D, Wang J, Huang Y, Zhou K, Ding X, Fu J (2014) The review of GRACE data applications in terrestrial hydrology monitoring. Adv Meteorol 2014:725131. https://doi.org/10.1155/2014/725131 Kao SC, Govindaraju RS (2010) A copula-based joint deficit index for droughts. J Hydrol 380(1–2):121–134 Keyantash JA, Dracup JA (2004) An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resour Res 40(9):W09304. https://doi.org/10.1029/2003WR002610 Khan MS, Liaqat UW, Baik J, Choi M (2018) Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach. Agric Meteorol 252:256–268 Kogan FN (1997) Global drought watch from space. Bull Am Meteor Soc 78(4):621–636 Kwon M, Kwon HH, Han D (2019) Spatio-temporal drought patterns of multiple drought indices based on precipitation and soil moisture: A case study in South Korea. Int J Climatol 39(12):4669–4687 Li C, Tang G, Hong Y (2018) Cross-evaluation of ground-based, multi-satellite and reanalysis precipitation products: applicability of the Triple Collocation method across Mainland China. J Hydrol 562:71–83 Li B, Rodell M, Kumar S, Beaudoing HK, Getirana A, Zaitchik BF, Tian S (2019) Global GRACE data assimilation for groundwater and drought monitoring: Advances and challenges. Water Resour Res 55(9):7564–7586 Liu Q, Zhang S, Zhang H, Bai Y, Zhang J (2020a) Monitoring drought using composite drought indices based on remote sensing. Sci Total Environ 711:134585 Liu X, Feng X, Ciais P, Fu B, Hu B, Sun Z (2020b) GRACE satellite-based drought index indicating increased impact of drought over major basins in China during 2002–2017. Agric for Meteorol 291:108057 Lloyd-Hughes B, Saunders MA (2002) A drought climatology for Europe. Int J Climatol J Roy Meteorol Soc 22(13):1571–1592 Long D, Pan Y, Zhou J, Chen Y, Hou X, Hong Y, Scanlon BR, Longuevergne L (2017) Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sens Environ 192:198–216 Lyu H, McColl KA, Li X, Derksen C, Berg A, Black TA, Euskirchen E, Loranty M, Pulliainen J, Rautiainen K, Rowlandson T, Roy A, Royer A, Langlois A, Stephens J, Lu H, Entekhabi D (2018) Validation of the SMAP freeze/thaw product using categorical triple collocation. Remote Sens Environ 205:329–337. https://doi.org/10.1016/j.rse.2017.12.007 Lyu F, Tang G, Behrangi A, Wang T, Tan X, Ma Z, Xiong W (2020) Precipitation merging based on the triple collocation method across mainland China. IEEE Trans Geosci Remote Sens 59(4):3161–3176 Massari C, Crow W, Brocca L (2017) An assessment of the performance of global rainfall estimates without ground-based observations. Hydrol Earth Syst Sci 21:4347–4361. https://doi.org/10.5194/hess-21-4347-2017 McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th conference on applied climatology, vol 17, no 22, pp 179–183 Meng X, Li R, Luan L, Lyu S, Zhang T, Ao Y, Ma Y (2018) Detecting hydrological consistency between soil moisture and precipitation and changes of soil moisture in summer over the Tibetan Plateau. Clim Dyn 51(11–12):4157–4168 Miralles DG, de Jeu RAM, Gash JH, Holmes TRH, Dolman AJ (2011a) Magnitude and variability of land evaporation and its components at the global scale. Hydrol Earth Syst Sci 15:967–981. https://doi.org/10.5194/hess-15-967-2011 Miralles DG, Holmes TRH, de Jeu RAM, Gash JH, Meesters AGCA, Dolman AJ (2011b) Global land-surface evaporation estimated from satellite-based observations. Hydrol Earth Syst Sci 15:453–469. https://doi.org/10.5194/hess-15-453-2011 Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):202–216 Mo KC (2011) Drought onset and recovery over the United States. J Geophys Res Atmos 116:D20106. https://doi.org/10.1029/2011JD016168 Moghimi MM, Zarei AR (2021) Evaluating performance and applicability of several drought indices in arid regions. Asia Pac J Atmos Sci 57:645–661 National Climate Centre (2009b) A prolonged spring heatwave over central and south-eastern Australia. Bureau Meteorol Spec Clim Stat 19:2–17 National Climate Centre (2009a) Exceptional winter heat over large parts of Australia. Bureau Meteorol Special Clim Stat 18:2–13 National Climate Centre (2012) Australia’s wettest two-year period on record; 2010–2011. Bureau Meteorol Spec Clim Stat 38:2–9 National Climate Centre (2013) Australia’s warmest September on record. Bureau Meteorol Spec Clim Stat 46:1–9 National Climate Centre (2014) Australia’s warmest spring on record. Bureau Meteorol Spec Clim Stat 50:1–7 Nguyen H, Wheeler MC, Otkin JA, Cowan T, Frost A, Stone R (2019a) Using the evaporative stress index to monitor flash drought in Australia. Environ Res Lett 14(6):064016 Nguyen P, Shearer EJ, Tran H, Ombadi M, Hayatbini N, Palacios T, Huynh P, Updegraff G, Hsu K, Kuligowski B, Logan WS, Sorooshian S (2019b) The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data. Nat Sci Data 6:180296. https://doi.org/10.1038/sdata.2018.296 Palmer WC (1965) Meteorological drought. Research paper no 45. Office of Climatology, US Weather Bureau, Washington DC, 58 p Palmer WC (1968) Keeping track of crop moisture conditions, nationwide: the new Crop Moisture Index. Weatherwise 21:156–161. https://doi.org/10.1080/00431672.1968.9932814 Pan M, Fisher CK, Chaney NW, Zhan W, Crow WT, Aires F, Entekhabi D, Wood EF (2015) Triple collocation: Beyond three estimates and separation of structural/non-structural errors. Remote Sens Environ 171:299–310 Park H, Kim K (2019) Prediction of severe drought area based on random forest: using satellite image and topography data. Water 11(4):705 Park S, Im J, Jang E, Rhee J (2016) Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions. Agric Meteorol 216:157–169 Partal T, Kahya E (2006) Trend analysis in Turkish precipitation data. Hydrol Process 20:2011–2026. https://doi.org/10.1002/hyp.5993 Pozzi W, Sheffield J, Stefanski R, Cripe D, Pulwarty R, Vogt JV, Heim RR Jr, Brewer MJ, Svoboda M, Westerhoff R, van Dikl AIJM, Lloyd-Hughes B, Pappenberger F, Werner M, Dutra E, Wetterhall F, Wagner W, Schubert S, Mo K, Nicholson M, Bettio L, Nunez L, van Beek R, Bierkens M, Goncalves de Goncalves LG, de Mattos JGZ, Lawford R (2013) Toward global drought early warning capability: expanding international cooperation for the development of a framework for monitoring and forecasting. Bull Am Meteor Soc 94(6):776–785 Purcell LC, Sinclair TR, McNew RW (2003) Drought avoidance assessment for summer annual crops using long-term weather data. Agron J 95(6):1566–1576 Qin Y, Yang D, Lei H, Xu K, Xu X (2015) Comparative analysis of drought based on precipitation and soil moisture indices in Haihe basin of North China during the period of 1960–2010. J Hydrol 526:55–67 Rajsekhar D, Singh VP, Mishra AK (2015) Multivariate drought index: an information theory based approach for integrated drought assessment. J Hydrol 526:164–182 Rhee J, Im J, Carbone GJ (2010) Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens Environ 114(12):2875–2887 Satish Kumar K, Rathnam EV, Sridhar V (2021) Tracking seasonal and monthly drought with GRACE-based terrestrial water storage assessments over Major River basins in South India. Sci Total Environ 763:142994. https://doi.org/10.1016/j.scitotenv.2020.142994 Satish Kumar K, AnandRaj P, Sreelatha K, Bisht DS, Sridhar V (2021) Monthly and seasonal drought characterization using grace-based groundwater drought index and its link to teleconnections across south indian river basins. Climate 9(4):56 Save H, Bettadpur S, Tapley BD (2016) High resolution CSR GRACE RL05 mascons. J Geophys Res Solid Earth 121:7547. https://doi.org/10.1002/2016JB013007 Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389 Sinha D, Syed TH, Famiglietti JS, Reager JT, Thomas RC (2017) Characterizing drought in India using GRACE observations of terrestrial water storage deficit. J Hydrometeorol 18(2):381–396 Sinha D, Syed TH, Reager JT (2019) Utilizing combined deviations of precipitation and GRACE-based terrestrial water storage as a metric for drought characterization: A case study over major Indian river basins. J Hydrol 572:294–307 Stoffelen A (1998) Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J Geophys Res Oceans 103(C4):7755–7766 Tarhule A, Lamb PJ (2003) Climate research and seasonal forecasting for West Africans: perceptions, dissemination, and use? Bull Am Meteor Soc 84:1741–1759 Thomas AC, Reager JT, Famiglietti JS, Rodell M (2014) A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys Res Lett 41(5):1537–1545 Trambauer P, Maskey S, Werner M, Pappenberger F, van Beek LPH, Uhlenbrook S (2014) Identification and simulation of space–time variability of past hydrological drought events in the Limpopo River basin, southern Africa. Hydrol Earth Syst Sci 18:2925–2942 Tsakiris G, Pangalou D, Vangelis H (2007) Regional drought assessment based on the reconnaissance drought index (RDI). Water Resour Manage 21(5):821–833 Ummenhofer CC, England MH, McIntosh PC, Meyers GA, Pook MJ, Risbey JS, Gupta AS, Taschetto AS (2009) What causes southeast Australia’s worst droughts? Geophys Res Lett 36(4):L04706 Van Dijk AI, Beck HE, Crosbie RS, de Jeu RA, Liu YY, Podger GM, Timbal B, Viney NR (2013) The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour Res 49(2):1040–1057 Vasiliades L, Loukas A, Liberis N (2011) A water balance derived drought index for Pinios River Basin. Greece Water Resourc Manag 25(4):1087–1101 Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718 Vishwakarma BD, Devaraju B, Sneeuw N (2018) What is the spatial resolution of GRACE satellite products for hydrology? Remote Sens 10(6):852 Wagner W, Dorigo W, de Jeu R, Fernandez D, Benveniste J, Haas E, Ertl M (2012) Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Annals of the Photogrammetry. Remote Sens Spatial Inform Sci (ISPRS Annals) 7:315–321 Wang S, Mo X, Hu S, Liu S, Liu Z (2018) Assessment of droughts and wheat yield loss on the North China Plain with an aggregate drought index (ADI) approach. Ecol Ind 87:107–116 Wang Y, Yang J, Chen Y, Su Z, Li B, Guo H, De Maeyer P (2020) Monitoring and predicting drought based on multiple indicators in an arid area. China Remote Sensing 12(14):2298 Wu H, Svoboda MD, Hayes MJ, Wilhite DA, Wen F (2007) Appropriate application of the standardized precipitation index in arid locations and dry seasons. Int J Climatol J Roy Meteorol Soc 27(1):65–79 Xiao L, Che T (2018) A new comprehensive daily snow depth dataset of the North Hemisphere during 1980–2016 merged from remote sensing, reanalysis, and in situ data based on" Multiple" Collocation. In: EGU general assembly conference abstracts, p 11295 Xu K, Yang D, Yang H, Li Z, Qin Y, Shen Y (2015) Spatio-temporal variation of drought in China during 1961–2012: a climatic perspective. J Hydrol 526:253–264 Yang J, Gong D, Wang W et al (2012) Extreme drought event of 2009/2010 over southwestern China. Meteorol Atmos Phys 115:173–184. https://doi.org/10.1007/s00703-011-0172-6 Yilmaz MT, Crow WT (2014) Evaluation of assumptions in soil moisture triple collocation analysis. J Hydrometeorol 15(3):1293–1302 Yilmaz MT, Crow WT, Anderson MC, Hain C (2012) An objective methodology for merging satellite and model based soil moisture products. Water Res Res 48:W11502. https://doi.org/10.1029/2011WR011682 Yin J, Zhan X, Hain CR, Liu J, Anderson MC (2018) A method for objectively integrating soil moisture satellite observations and model simulations toward a blended drought index. Water Resour Res 54(9):6772–6791 Yoon DH, Nam WH, Lee HJ, Hong EM, Feng S, Wardlow BD, Tadesse T, Svoboda MD, Hayes MJ, Kim DE (2020) Agricultural drought assessment in East Asia using satellite-based indices. Remote Sensing 12(3):444 Zhao M, Velicogna I, Kimball JS (2017) A global gridded dataset of GRACE drought severity index for 2002–14: comparison with PDSI and SPEI and a case study of the Australia millennium drought. J Hydrometeorol 18(8):2117–2129 Zhu Y, Wang W, Singh VP, Liu Y (2016) Combined use of meteorological drought indices at multi-time scales for improving hydrological drought detection. Sci Total Environ 571:1058–1068