Tích hợp các Hàm Đẹp Cấp Cơ Sở trong Các Không Gian Hilbert

Journal of Optimization Theory and Applications - Tập 124 - Trang 561-579 - 2005
F. Bernard1, L. Thibault1, D. Zagrodny2
1Département de Mathématiques, Université Montpellier II, Montpellier, France
2Department of Mathematics, Cardinal Stefan Wiszynski University, Warsaw, Poland

Tóm tắt

Trong bài báo này, chúng tôi thu được một số kết quả tích hợp từ các bao hàm con vi phân cho các hàm đẹp cấp cơ sở bằng cách sử dụng các bao hàm Moreau. Một kết quả tổng quát liên quan đến một bao hàm con vi phân mở rộng. Kết quả này cho biết rằng, đối với g là hàm đẹp cấp cơ sở tại x, bao hàm\n\n \n \n \n $$\partial f \subset g + \gamma \mathbb{B}$$\n xung quanh x ngụ ý rằng, với bất kỳ γ′]0; γ[, f − g là liên tục Lipschitz với hạng γ′∈ trên một vùng lân cận thích hợp của x.

Từ khóa

#Hàm đẹp cấp cơ sở #bao hàm con vi phân #không gian Hilbert #liên tục Lipschitz #bao hàm Moreau.

Tài liệu tham khảo

R. Poliquin (1991) ArticleTitleIntegration of Subdifferentials of Nonconvex Functions Nonlinear Analysis: Theory Methods and Applications 17 385–398 A.B Levy RA Poliquin L Thibault (1995) ArticleTitlePartial Extension of Attouch’s Theorem with Applications to Proto-Derivatives of Subgradient Mappings Transactions of the American Mathematical Society 347 1269–1294 L. Thibault D. Zagrodny (1995) ArticleTitleIntegration of Subdifferentials of Lower Semicontinuous Functions on Banach Spaces Journal of Mathematical Analysis and Applications 189 33–58 Geoffroy, M., Jules, F., and Lassonde, M., Integration of Subdifferentials of Lower Semicontinuous Functions, Preprint 00–02, Departement de Mathématiques, Université des Antilles et de la Guyane, 2000. Thibault, L., and Zagrodny, D., Enlarged Inclusion of Subdifferentials, Canadian Mathematical Bulletin (to appear). M. Ivanov N. Zlateva (2001) ArticleTitleOn Primal Lower Nice Property Comptes Rendus de l’Académie Bulgare des Sciences 54 5–10 Bernard, F., and Thibault, L., Prox-Regular Functions in Hilbert Spaces, Journal of Mathematical Analysis and Applications (to appear). F Clarke H Ledyaev S Yu JR Stern RP Wolenski (1997) Nonsmooth Analysis and Control Theory Springer Verlag New York, NY B. S. Mordukhovich Y. Shao (1996) ArticleTitleNonsmooth Sequential Analysis in Asplund Spaces Transactions of the American Mathematical Society 124 1235–1280 AD Ioffe (1990) ArticleTitleProximal Analysis and Approximate Subdifferentials Journal of the London Mathematical Society 41 175–192 I. Ekeland (1979) ArticleTitleNonconvex Minimization Problems Bulletin of the American Mathematical Society (New Series) 1 443–474 Moreau, J. J., Proximité et Dualité dans un Espace Hilbertien, Bulletin de la Société Mathématique de France, Vol. 93, 273–299, 1965. RT Rockafellar RJ Wets (1988) Variational Analysis Springer Verlag New York, NY M. Degiovanni A. Marino M. Tosques (1985) ArticleTitleEvolution Equations with Lack of Convexity Nonlinear Analysis: Theory, Methods and Applications 9 1401–144 R. A. Poliquin R. T. Rockafellar (1996) ArticleTitleProx-Regular Functions in Variational Analysis Transactions of the American Mathematical Society 348 1805–1838 J. M. Borwein J. R. Giles (1987) ArticleTitleThe Proximal Normal Formula in Banach Space Transactions of the American Mathematical Society 302 371–381 H Attouch (1984) Variational Convergence for Functions and Operators Pitman London, England R. Correa A. Jofre L. Thibault (1992) ArticleTitleCharacterization of Lower Semicontinuous Convex Functions Proceedings of the American Mathematical Society 116 61–72 D. Zagrodny (1988) ArticleTitleApproximate Mean-Value Theorem for Upper Subderivatives Nonlinear Analysis: Theory, Methods and Applications 12 1413–1428 Ivanov, M., and Zlateva, N., Subdifferential Characterization of Primal Lower Nice Functions on Smooth Banach Spaces (submitted).