Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tích hợp các kỹ thuật địa vật lý bổ sung gần bề mặt để nghiên cứu các khu vực khảo cổ cổ ở Sa mạc Atacama (Pampa Iluga, Bắc Chile)
Tóm tắt
Các kỹ thuật địa vật lý gần bề mặt rất hữu ích cho việc phân tích các khu vực khảo cổ do khả năng phủ rộng nhanh chóng và thu thập dữ liệu có độ phân giải cao để xác định vị trí cho các cuộc khai quật khảo cổ. Tuy nhiên, trong môi trường siêu khô, các kỹ thuật địa vật lý thông thường có thể không đạt được kết quả như mong đợi do bề mặt gần đó rất khô. Nghiên cứu này đề xuất việc tích hợp radar xuyên mặt đất (GPR) và kỹ thuật cảm ứng điện từ (EMI), nhằm làm rõ nguồn gốc của hàng nghìn đặc điểm hình tròn xếp thẳng hàng nằm tại khu vực khảo cổ Iluga, được đặt ở một trong những nơi khô cằn nhất trên Trái Đất (Pampa del Tamarugal, Sa mạc Atacama). GPR đã hữu ích trong việc nhận diện các lớp trầm tích sa bồi, các chỗ trống đụn cát và rễ thực vật ngay bên dưới các đặc điểm hình tròn. Dữ liệu độ nhạy từ tính thu được từ thành phần pha đồng bộ của EMI, thường được coi là một kết quả bổ sung, đã hữu ích trong việc xác định các lò sưởi ở gần các hàng xếp. Những phát hiện địa vật lý này đã được xác minh thông qua một cuộc khai thác khảo cổ. Kết quả tìm được cho thấy các đặc điểm hình tròn này là kết quả của một quá trình phá rừng rộng rãi ở Pampa del Tamarugal, bao gồm việc khai thác cả thân và rễ của cây algarrobos (Prosopis chilensis) hoặc tamarugos (Prosopis tamarugo), có khả năng để sản xuất than củi gần đây. Phương pháp được đề xuất mang lại kết quả đầy hứa hẹn cho các nghiên cứu khảo cổ và địa chất nông trong các môi trường siêu khô và khô cằn.
Từ khóa
#kỹ thuật địa vật lý #radar xuyên mặt đất #cảm ứng điện từ #khảo cổ #Pampa del Tamarugal #Sa mạc AtacamaTài liệu tham khảo
Abdu H, Robinson D, Jones S (2007) Comparing bulk soil electrical conductivity determination using the DUALEM-1S and EM38-DD electromagnetic induction instruments. Soil Sci Soc Am J 71(1):189–196. https://doi.org/10.2136/sssaj2005.0394
Alani AM, Lantini L (2019) Recent advances in tree root mapping and assessment using non-destructive testing methods: a focus on ground penetrating radar. Surv Geophys 41(3):605–646. https://doi.org/10.1007/s10712-019-09548-6
Andrade F, Fischer T, Valenta J (2016) Study of errors in conductivity meters using the low induction number approximation and how to overcome them. Proceedings. https://doi.org/10.3997/2214-4609.201602080
Annan AP (2005) 11. Ground-penetrating radar. In: Butler Dwain K (ed) Near-surface geophysics. Society of Exploration Geophysicists, pp 357–438. https://doi.org/10.1190/1.9781560801719.ch11
Araya Vargas J, Gil PM, Meza FJ, Yáñez G, Menanno G, García-Gutiérrez V, Luque AJ, Poblete F, Figueroa R, Maringue J, Pérez-Estay N, Sanhueza J (2021) Soil electrical resistivity monitoring as a practical tool for evaluating irrigation systems efficiency at the orchard scale: a case study in a vineyard in Central Chile. Irrig Sci 39(1):123–143. https://doi.org/10.1007/s00271-020-00708-w
Armijo R, Lacassin R, Coudurier-Curveur A, Carrizo D (2015) Coupled tectonic evolution of Andean orogeny and global climate. Earth Sci Rev 143:1–35. https://doi.org/10.1016/j.earscirev.2015.01.005
Artagan SS, Bianchini Ciampoli L, D’Amico F, Calvi A, Tosti F (2019) Non-destructive assessment and health monitoring of railway infrastructures. Surv Geophys 41(3):447–483. https://doi.org/10.1007/s10712-019-09544-w
Barba L, Muñoz I, Ortiz A, Blancas J (2015) El Uso De Técnicas Geofísicas Para Determinar Sistemas Constructivos Y Materiales Presentes En Los Túmulos Del Período Formativo En El Valle De Azapa, Arica, Chile. Chungará (Arica), ahead. https://doi.org/10.4067/s0717-73562015005000008
Barnard H, Dooley AN (2017) An ancient irrigation canal in the pampa Tamarugal (Chile). J Field Archaeol 42(4):259–268. https://doi.org/10.1080/00934690.2017.1338117
Barnes M, Fleming D (1991) Filtration-gallery irrigation in the Spanish new world. Lat Am Antiq 2(1):48–68. https://doi.org/10.2307/971895
Beaumont P (1971) Qanat systems in Iran. Int Assoc Sci Hydrol Bull 16(1):39–50. https://doi.org/10.1080/02626667109493031
Billinghurst GE (1893) La irrigación en Tarapacá. Ercilla, Santiago, Chile
Binley A, Hubbard SS, Huisman JA, Revil A, Robinson DA, Singha K, Slater LD (2015) The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour Res 51(6):3837–3866. https://doi.org/10.1002/2015wr017016
Blanco-Arrué B, Yogeshwar P, Tezkan B, Mörbe W, Díaz D, Farah B, Buske S, Ninneman L, Domagala J, Diederich-Leicher J, Gebhardt A, Wennrich V (2022) Exploration of sedimentary deposits in the Atacama Desert, Chile, using integrated geophysical techniques. J S Am Earth Sci 115:103746. https://doi.org/10.1016/j.jsames.2022.103746
Bouhsane N, Bouhlassa S (2018) Assessing magnetic susceptibility profiles of topsoils under different occupations. Int J Geophys 2018:1–8. https://doi.org/10.1155/2018/9481405
Bramley R, Trought M, Praat JP (2011) Vineyard variability in Marlborough, New Zealand: characterising variation in vineyard performance and options for the implementation of Precision Viticulture. Aust J Grape Wine Res 17(1):72–78. https://doi.org/10.1111/j.1755-0238.2010.00119.x
Bristow C, Duller G, Lancaster N (2007) Age and dynamics of linear dunes in the Namib Desert. Geology 35(6):555. https://doi.org/10.1130/g23369a.1
Calderon G, Garrido M, Acevedo E (2015) Prosopis tamarugo Phil: a native tree from the Atacama Desert groundwater table depth thresholds for conservation. Rev Chil Hist Nat. https://doi.org/10.1186/s40693-015-0048-0
Callegary JB, Ferré TPA, Groom RW (2007) Vertical spatial sensitivity and exploration depth of low-induction-number electromagnetic-induction instruments. Vadose Zone J 6(1):158–167. https://doi.org/10.2136/vzj2006.0120
Carretier S, Regard V, Leanni L, Farías M (2019) Long-term dispersion of river gravel in a canyon in the Atacama Desert, Central Andes, deduced from their 10Be concentrations. Sci Rep. https://doi.org/10.1038/s41598-019-53806-x
Carrière S, Ruffault J, Pimont F, Doussan C, Simioni G, Chalikakis K, Limousin JM, Scotti I, Courdier F, Cakpo CB, Davi H, Martin-StPaul N (2020) Impact of local soil and subsoil conditions on inter-individual variations in tree responses to drought: insights from electrical resistivity tomography. Sci Total Environ 698:134247. https://doi.org/10.1016/j.scitotenv.2019.134247
Casas A, Cosentino PL, Fiandaca G, Himi M, Macias JM, Martorana R, Muñoz A, Rivero L, Sala R, Teixell I (2018) Non-invasive geophysical surveys in search of the Roman temple of Augustus under the cathedral of Tarragona (Catalonia, Spain): A Case Study. Surv Geophys 39(6):1107–1124. https://doi.org/10.1007/s10712-018-9470-6
Castro Castro L (2020) El bosque de la Pampa del Tamarugal y la industria salitrera: el problema de la deforestación, los proyectos para su manejo sustentable y el debate político (Tarapacá, Perú-Chile 1829–1941). Scr Nova. Revista Electrón Geogr Ciencias Soc 24:20. https://doi.org/10.1344/sn2020.24.26507
Catling DC, Claire MW, Zahnle KJ, Quinn RC, Clark BC, Hecht MH, Kounaves S (2010) Atmospheric origins of perchlorate on Mars and in the Atacama. J Geophys Res. https://doi.org/10.1029/2009je003425
Chávez R, Clevers J, Herold M, Ortiz M, Acevedo E (2013) Modelling the spectral response of the desert tree Prosopis tamarugo to water stress. Int J Appl Earth Obs Geoinf 21:53–65. https://doi.org/10.1016/j.jag.2012.08.013
Chávez R, Clevers J, Decuyper M, de Bruin S, Herold M (2016) 50 years of water extraction in the Pampa del Tamarugal basin: Can Prosopis tamarugo trees survive in the hyper-arid Atacama Desert (Northern Chile)? J Arid Environ 124:292–303. https://doi.org/10.1016/j.jaridenv.2015.09.007
Cheng ZY, Fernández-Remolar DC, Izawa MRM, Applin DM, Chong Díaz M, Fernandez-Sampedro MT, García-Villadangos M, Huang T, Xiao L, Parro V (2016) Oxalate formation under the hyperarid conditions of the Atacama Desert as a mineral marker to provide clues to the source of organic carbon on Mars. J Geophys Res Biogeosci 121(6):1593–1604. https://doi.org/10.1002/2016jg003439
Clark A (2003) Seeing beneath the soil, prospecting methods in archaeology. Taylor & Francis
Colombero C, Comina C, Rocchietti D, Garbarino GB, Sambuelli L (2021) Ground penetrating radar surveys in the archaeological area of Augusta Bagiennorum: comparisons between geophysical and archaeological campaigns. Archaeol Prospect. https://doi.org/10.1002/arp.1855
CONAF (1997) In: Gobierno de Chile (Ed.), Plan de Manejo Reserva Nacional Pampa del Tamarugal. Ministerio de Agricultura, Chile, Res. 425.
Conyers LB, Leckebusch J (2010) Geophysical archaeology research agendas for the future: some ground-penetrating radar examples. Archaeol Prospect. https://doi.org/10.1002/arp.379
Couyoumdjian R, Larrain H (1975) El plano de la Quebrada de Tarapacá, de Don Antonio O´´’Brien. Su valor geográfico y socio-antropológico. Revista Geografía Norte Grande 1:329–357
dal Bo I, Klotzsche A, Bol R, Moradi G, Weihermüller L, Vereecken H, Kruk J (2021) GPR and EMI characterization of the hyperarid study site of Yungay, Chile: implications of applying geophysical methods on mars. Earth Space Sci. https://doi.org/10.1029/2021ea001790
Dalan RA (2008) A review of the role of magnetic susceptibility in archaeogeophysical studies in the USA: recent developments and prospects. Archaeol Prospect 15(1):1–31. https://doi.org/10.1002/arp.323
Daniels DJ (2004) Ground Penetrating Radar, 2nd edn. The Institution of Electrical Engineers, UK
Dearing JA, Hay KL, Baban SMJ, Huddleston AS, Wellington EMH, Loveland PJ (1996) Magnetic susceptibility of soil: an evaluation of conflicting theories using a national data set. Geophys J Int 127(3):728–734. https://doi.org/10.1111/j.1365-246x.1996.tb04051.x
Decuyper M, Chávez RO, Copini P, Sass-Klaassen U (2016) A multi-scale approach to assess the effect of groundwater extraction on Prosopis tamarugo in the Atacama Desert. J Arid Environ 131:25–34. https://doi.org/10.1016/j.jaridenv.2016.03.014
Deiana R, Leucci G, Martorana R (2018) New perspectives on geophysics for archaeology: a special issue. Surv Geophys 39(6):1035–1038. https://doi.org/10.1007/s10712-018-9500-4
Dentith M, Mudge ST (2014) Geophysics for the mineral exploration geoscientist. Cambridge University Press
DGA (2012) Levantamiento de información hidrogeológica para la modelación del acuífero de Pica, Cuenca de la Pampa del Tamarugal, región de Tarapacá. Ministerio de Obras Públicas, Dirección General de Aguas, S.I.T. 294: 193 p. Santiago.
Dingman RJ, Galli C (1965) Geology and groundwater resources of the Pica area, Tarapacá Province, Chile. U S Geol Surv Bull 1189:113
Domsch H, Giebel A (2004) Estimation of soil textural features from soil electrical conductivity recorded using the EM38. Precision Agric 5(4):389–409. https://doi.org/10.1023/b:prag.0000040807.18932.80
Elwaseif M, Robinson J, Day-Lewis F, Ntarlagiannis D, Slater L, Lane J, Minsley B, Schultz G (2017) A matlab-based frequency-domain electromagnetic inversion code (FEMIC) with graphical user interface. Comput Geosci 99:61–71. https://doi.org/10.1016/j.cageo.2016.08.016
Ernenwein EG, Hargrave ML (2007) Archaeological geophysics for DoD Field use: a guide for new and novice users. Environmental security technology certification program, corps of engineers, Washington DC USA
Evenstar L, Mather A, Hartley A, Stuart F, Sparks R, Cooper F (2017) Geomorphology on geologic timescales: evolution of the late Cenozoic Pacific paleosurface in Northern Chile and Southern Peru. Earth Sci Rev 171:1–27. https://doi.org/10.1016/j.earscirev.2017.04.004
Everett ME (2013) Near-surface applied geophysics. Cambridge University Press
Farías M, Charrier R, Comte D, Martinod J, Hérail G (2005) Late Cenozoic deformation and uplift of the western flank of the Altiplano: Evidence from the depositional, tectonic, and geomorphologic evolution and shallow seismic activity (northern Chile at 19°30′S). Tectonics 24(4):TC4001. https://doi.org/10.1029/2004tc001667
Farzamian M, Monteiro Santos FA, Khalil MA (2015) Application of EM38 and ERT methods in estimation of saturated hydraulic conductivity in unsaturated soil. J Appl Geophys 112:175–189. https://doi.org/10.1016/j.jappgeo.2014.11.016
Fassbinder JWE (2016) Magnetometry for archaeology. Encycloped Geoarchaeol. https://doi.org/10.1007/978-1-4020-4409-0_169
Fernández-Remolar DC, Chong-Díaz G, Ruíz-Bermejo M, Harir M, Schmitt-Kopplin P, Tziotis D, Gómez-Ortíz D, García-Villadangos M, Martín-Redondo MP, Gómez F, Rodríguez-Manfredi JA, Moreno-Paz M, de Diego-Castilla G, Echeverría A, Urtuvia VN, Blanco Y, Rivas L, Izawa MRM et al (2013) Molecular preservation in halite- and perchlorate-rich hypersaline subsurface deposits in the Salar Grande basin (Atacama Desert, Chile): implications for the search for molecular biomarkers on Mars. J Geophys Res Biogeosci 118(2):922–939. https://doi.org/10.1002/jgrg.20059
Forte E, Pipan M (2008) Integrated seismic tomography and ground-penetrating radar (GPR) for the high-resolution study of burial mounds (tumuli). J Archaeol Sci 35(9):2614–2623. https://doi.org/10.1016/j.jas.2008.04.024
Fritz P, Suzuki O, Silva C, Salati E (1981) Isotope hydrology of groundwaters in the Pampa del Tamarugal Chile. J Hydrol 53(1–2):161–184. https://doi.org/10.1016/0022-1694(81)90043-3
García M, Vidal A, Mandakovic V, Maldonado A, Peña MP, Belmonte E (2014) Alimentos, tecnologías vegetales y paleoambiente en las aldeas formativas de la Pampa del Tamarugal, Tarapacá (ca. 900 AC-800 DC). Estud Atacam 47:33–58
García M, Urrutia F, Uribe M, Mendez-Quiros P, Izaurieta R, Maldonado A, Mandakovic V, Saintenoy T, Sánchez T, Vidal-Elgueta A (2022) In press. Pampa Iluga: Tecnología, trabajo y persistencia de un paisaje agrícola prehispánico en el desierto de Atacama (50 AC-1800 DC). Revista de Geografía Norte Grande.
Garreaud R, Vuille M, Clement AC (2003) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr Palaeoclimatol Palaeoecol 194(1–3):5–22. https://doi.org/10.1016/s0031-0182(03)00269-4
Gayo EM, Latorre C, Jordan TE, Nester PL, Estay SA, Ojeda KF, Santoro CM (2012) Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (~21°S). Earth Sci Rev 113(3–4):120–140. https://doi.org/10.1016/j.earscirev.2012.04.003
Gayo EM, Latorre C, Santoro CM (2015) Timing of occupation and regional settlement patterns revealed by time-series analyses of an archaeological radiocarbon database for the South-Central Andes (16°–25°S). Quatern Int 356:4–14. https://doi.org/10.1016/j.quaint.2014.09.076
Goodman D, Piro S (2013) GPR remote sensing in archaeology. Springer, New York
Grellier S, Florsch N, Camerlynck C, Janeau J, Podwojewski P, Lorentz S (2013) The use of Slingram EM38 data for topsoil and subsoil geoelectrical characterization with a Bayesian inversion. Geoderma 200–201:140–155. https://doi.org/10.1016/j.geoderma.2013.01.020
Grosjean M, Núñez L, Cartajena I (2005) Palaeoindian occupation of the Atacama Desert, northern Chile. J Quat Sci 20(7–8):643–653. https://doi.org/10.1002/jqs.969
Grote K, Hubbard S, Rubin Y (2002) GPR monitoring of volumetric water content in soils applied to highway construction and maintenance. Lead Edge 21(5):482–504. https://doi.org/10.1190/1.1481259
Guptasarma D, Singh B (1997) New digital linear filters for Hankel J 0 and J 1 transforms. Geophys Prospect 45(5):745–762. https://doi.org/10.1046/j.1365-2478.1997.500292.x
Hartley AJ, Evenstar L (2010) Cenozoic stratigraphic development in the north Chilean forearc: implications for basin development and uplift history of the Central Andean margin. Tectonophysics 495(1–2):67–77. https://doi.org/10.1016/j.tecto.2009.05.013
Healy R, Scanlon B (2010) Groundwater recharge. Estimating groundwater recharge. Cambridge University Press, Cambridge, pp 1–14
Heggy E, Normand J, Palmer EM, Abotalib AZ (2022) Exploring the nature of buried linear features in the Qatar peninsula: Archaeological and paleoclimatic implications. ISPRS J Photogramm Remote Sens 183:210–227. https://doi.org/10.1016/j.isprsjprs.2021.10.007
Heil K, Schmidhalter U (2015) Comparison of the EM38 and EM38-MK2 electromagnetic induction-based sensors for spatial soil analysis at field scale. Comput Electron Agric 110:267–280. https://doi.org/10.1016/j.compag.2014.11.014
Heil K, Schmidhalter U (2019) Theory and guidelines for the application of the geophysical sensor EM38. Sensors 19(19):4293. https://doi.org/10.3390/s19194293
Hidalgo J (1985) Proyectos coloniales inéditos de riego del desierto: Azapa (Cabildo de Arica, 1619); Pampa Iluga (O’Brien, 1765) y Tarapacá (Mendizábal, 1807). Chungará 14:183–222
Hossain M, Lamb D, Lockwood P, Frazier P (2010) EM38 for volumetric soil water content estimation in the root-zone of deep vertosol soils. Comput Electron Agric 74(1):100–109. https://doi.org/10.1016/j.compag.2010.07.003
Houston J (2002) Groundwater recharge through an alluvial fan in the Atacama Desert, northern Chile: mechanisms, magnitudes and causes. Hydrol Process 16(15):3019–3035. https://doi.org/10.1002/hyp.1086
Houston J (2006) Variability of precipitation in the Atacama Desert: its causes and hydrological impact. Int J Climatol 26:2181–2198. https://doi.org/10.1002/joc.1359
Houston J, Hartley AJ (2003) The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int J Climatol 23:1453–1464. https://doi.org/10.1002/joc.938
Huang H, Deszcz‐Pan M, Smith B (2008) Limitations of small EM sensors in resistive terrain. In: Symposium on the application of geophysics to engineering and environmental problems 2008. https://doi.org/10.4133/1.2963255
Huang H, Won IJ (2000) Conductivity and susceptibility mapping using broadband electromagnetic sensors. J Environ Eng Geophys 5(4):31–41. https://doi.org/10.4133/jeeg5.4.31
Hubbard SS, Gangodagamage C, Dafflon B, Wainwright H, Peterson J, Gusmeroli A, Ulrich C, Wu Y, Wilson C, Rowland J, Tweedie C, Wullschleger SD (2012) Quantifying and relating land-surface and subsurface variability in permafrost environments using LiDAR and surface geophysical datasets. Hydrogeol J 21(1):149–169. https://doi.org/10.1007/s10040-012-0939-y
Huth NI, Poulton PL (2007) An electromagnetic induction method for monitoring variation in soil moisture in agroforestry systems. Soil Res 45(1):63. https://doi.org/10.1071/sr06093
Johnson JK, Giardano M, Kvamme KL, Clay BR, Green TJ, Dalan RA, Hargrave ML, Haley BS, Lockhart JJ, Somers L, Conyers LB (2006) Remote sensing in archaeology: an explicitly north American perspective, 1st edn. University Alabama Press, Alabama
Jol HM (2009) Ground penetrating radar theory and applications, 1st edn. Elsevier Science, Amsterdam
Jol HM, Bristow CS (2003) GPR in sediments: advice on data collection, basic processing and interpretation, a good practice guide. Geol Soc London Special Publ 211(1):9–27. https://doi.org/10.1144/gsl.sp.2001.211.01.02
Jordan TE, Nester PL, Blanco N, Hoke GD, Dávila F, Tomlinson AJ (2010) Uplift of the Altiplano-Puna plateau: a view from the west. Tectonics. https://doi.org/10.1029/2010tc002661
Jordan TE, Kirk-Lawlor NE, Blanco NP, Rech JA, Cosentino NJ (2014) Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile. Geol Soc Am Bull 126(7–8):1016–1046. https://doi.org/10.1130/b30978.1
Khongnawang T, Zare E, Srihabun P, Khunthong I, Triantafilis J (2021) Digital soil mapping of soil salinity using EM38 and quasi-3D modelling software (EM4Soil). Soil Use Manag 38(1):277–291. https://doi.org/10.1111/sum.12778
Lancelotti C, Biagetti S, Zerboni A, Usai D, Madella M (2019) The archaeology and ethnoarchaeology of rain-fed cultivation in arid and hyper-arid North Africa. Antiquity 93(370):1026–1039
Latorre C, Santoro CM, Ugalde PC, Gayo EM, Osorio D, Salas-Egaña C, de Pol-Holz R, Joly D, Rech JA (2013) Late Pleistocene human occupation of the hyperarid core in the Atacama Desert, Northern Chile. Quatern Sci Rev 77:19–30. https://doi.org/10.1016/j.quascirev.2013.06.008
Le Borgne E (1955) Susceptibilité magnétique anormale du sol superficiel. Ann Geophys 11:399–419
Le Borgne E (1960) Influence du feu sur les proprietes magnétiques du sol et sur celles du schiste et du granite. Ann Geophys 16:159–195
Lictevout E, Abellanosa C, Maass C, Pérez N, Yáñez G, Véronique L (2020) Exploration, mapping and characterization of filtration galleries of the Pica Oasis, northern Chile: a contribution to the knowledge of the Pica aquifer. Andean Geol 47(3):529. https://doi.org/10.5027/andgeov47n3-3272
Mandakovic V, Viguier B, Gallegos-Poch F, González V., Menanno G., Lizarde C, Araya J, Uribe M, Yáñez G (2020) Aguas de las profundidades del desierto: tecnología de riego en Pampa Iluga, Tarapacá. CONAHIS IX. Perú, Lima. From November 2nd to 7th 2020
McClean RG, Kean W (1993) Contributions of wood ash magnetism to archaeomagnetic properties of fire pits and hearths. Earth Planet Sci Lett 119(3):387–394. https://doi.org/10.1016/0012-821x(93)90146-z
McLachlan P, Blanchy G, Binley A (2021) EMagPy: Open-source standalone software for processing, forward modeling and inversion of electromagnetic induction data. Comput Geosci 146:104561. https://doi.org/10.1016/j.cageo.2020.104561
McNeill JD, Bosnar M (1999) Application of “dipole-dipole” electromagnetic systems for geological depth sounding (Technical Note N° 31). Geonics Limited.
McNeill JD (1980) Electromagnetics terrain conductivity measure at low induction numbers. Tech. Note TN-6. Geonics Ltd, Mississauga, Ont., Canada. 13pp.
McNeill JD (2013) Archaeological mapping using the Geonics EM38B to map terrain magnetic susceptibility (With Selected Case Histories). Tech. Note TN-35. Geonics Ltd, Mississauga, Ont., Canada. 13pp.
McRostie VB, Gayo EM, Santoro CM, de Pol-Holz R, Latorre C (2017) The pre-Columbian introduction and dispersal of Algarrobo (Prosopis, Section Algarobia) in the Atacama Desert of northern Chile. PLoS One 12(7):e0181759. https://doi.org/10.1371/journal.pone.0181759
Morales MS, Cook ER, Barichivich J, Christie DA, Villalba R, LeQuesne C, Srur AM, Ferrero ME, González-Reyes L, Couvreux F, Matskovsky V, Aravena JC, Lara A, Mundo IA, Rojas F, Prieto MR, Smerdon JE, Bianchi LO, Masiokas MH et al (2020) Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. Proc Natl Acad Sci 117(29):16816–16823. https://doi.org/10.1073/pnas.2002411117
Moura De Andrade FC, Fischer T (2017) Generalised relative and cumulative response functions for electromagnetic induction conductivity meters operating at low induction numbers. Geophys Prospect 66(3):595–602. https://doi.org/10.1111/1365-2478.12553
Narjary B, Meena MD, Kumar S, Kamra SK, Sharma DK, Triantafilis J (2019) Digital mapping of soil salinity at various depths using an EM38. Soil Use Manag 35(2):232–244. https://doi.org/10.1111/sum.12468
Nasiri F, Mafakheri MS (2015) Qanat water supply systems: a revisit of sustainability perspectives. Environ Syst Res 4(1):1–5. https://doi.org/10.1186/s40068-015-0039-9
Navarro-González R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J et al (2003) Mars-like soils in the Atacama desert, Chile, and the dry limit of microbial life. Science 302(5647):1018–1021. https://doi.org/10.1126/science.1089143
Novo A, Vincent ML, Levy TE (2012) Geophysical surveys at Khirbat Faynan, an ancient mound site in Southern Jordan. Int J Geophys 2012:1–8. https://doi.org/10.1155/2012/432823
Obrocki L, Eder B, Gehrke H, Lang F, Vött A, Willershäuser T, Rusch K, Wilken D, Hatzi-Spiliopoulou G, Kolia E, Vikatou O (2019) Detection and localization of chamber tombs in the environs of ancient Olympia, Peloponnese, Greece, based on a combination of archaeological survey and geophysical prospection. Geoarchaeology 34(6):648–660. https://doi.org/10.1002/gea.21724
Osella A, Vega MDL, Lascano E (2005) 3D electrical imaging of an archaeological site using electrical and electromagnetic methods. Geophysics 70(4):G101–G107. https://doi.org/10.1190/1.1993727
Oyarzún J, Oyarzún R (2009) Sustainable development threats, inter-sector conflicts and environmental policy requirements in the arid, mining rich, northern Chile territory. Sustain Dev 19(4):263–274. https://doi.org/10.1002/sd.441
Piro S, Mauriello P, Cammarano F (2000) Quantitative integration of geophysical methods for archaeological prospection. Archaeol Prospect 7(4):203–213
Reynolds JM (2011) An introduction to applied and environmental geophysics, 2nd edn. Wiley-Blackwell, New York
Rivera-Díaz MA (2018) Bosques de tamarugos, un acercamiento etnohistórico para el estudio del paleoclima en el desierto De Atacama. Diálogo Andino 56:119–139. https://doi.org/10.4067/s0719-26812018000200119
Robinson DA, Lebron I, Lesch SM, Shouse P (2004) Minimizing drift in electrical conductivity measurements in high temperature environments using the EM-38. Soil Sci Soc Am J 68(2):339–345. https://doi.org/10.2136/sssaj2004.3390
Rodrigues SI, Porsani JL, Santos VR, DeBlasis PA, Giannini PC (2009) GPR and inductive electromagnetic surveys applied in three coastal sambaqui (shell mounds) archaeological sites in Santa Catarina state, South Brazil. J Archaeol Sci 36(10):2081–2088. https://doi.org/10.1016/j.jas.2009.05.013
Romero-Ruiz A, Linde N, Keller T, Or D (2018) A Review of geophysical methods for soil structure characterization. Rev Geophys 56(4):672–697. https://doi.org/10.1029/2018rg000611
Ruthsatz AD, Sarmiento Flores A, Diaz D, Reinoso PS, Herrera C, Brasse H (2018) Joint TEM and MT aquifer study in the Atacama desert, North Chile. J Appl Geophys 153:7–16. https://doi.org/10.1016/j.jappgeo.2018.04.002
Sáez A, Godfrey LV, Herrera C, Chong G, Pueyo JJ (2016) Timing of wet episodes in Atacama desert over the last 15 ka. The groundwater discharge deposits (GWD) from Domeyko Range at 25°S. Quatern Sci Rev 145:82–93. https://doi.org/10.1016/j.quascirev.2016.05.036
Santana-Sagredo F, Schulting RJ, Méndez-Quiros P, Vidal-Elgueta A, Uribe M, Loyola R, Maturana-Fernández A, Díaz FP, Latorre C, McRostie VB, Santoro CM, Mandakovic V, Harrod C, Lee-Thorp J (2021) ‘White gold’ guano fertilizer drove agricultural intensification in the Atacama Desert from ad 1000. Nat Plants 7(2):152–158. https://doi.org/10.1038/s41477-020-00835-4
Santoro CM, Capriles JM, Gayo EM, de Porras ME, Maldonado A, Standen VG, Latorre C, Castro V, Angelo D, McRostie V, Uribe M, Valenzuela D, Ugalde PC, Marquet PA (2017) Continuities and discontinuities in the socio-environmental systems of the Atacama Desert during the last 13,000 years. J Anthropol Archaeol 46:28–39. https://doi.org/10.1016/j.jaa.2016.08.006
Santos VR, Porsani JL, Mendonça CA, Rodrigues SI, DeBlasis PD (2009) Reduction of topography effect in inductive electromagnetic profiles: application on coastal sambaqui (shell mound) archaeological site in Santa Catarina state Brazil. J Archaeol Sci 36(10):2089–2095. https://doi.org/10.1016/j.jas.2009.05.014
Scanlon BR, Keese K, Reedy RC, Simunek J, Andraski BJ (2003) Variations in flow and transport in thick desert vadose zones in response to paleoclimatic forcing (0–90 kyr): field measurements, modeling, and uncertainties. Water Resour Res. https://doi.org/10.1029/2002wr001604
Scardozzi G, Giese S, Hübner C (2012) Integrated geophysical investigations in Hierapolis of Phrygia (Turkey). Near Surf Geophys 11(1):101–114. https://doi.org/10.3997/1873-0604.2012043
Shapovalov V, Okost M, Vasilchenko A, Yavna V (2019) GPR-based moisture content determination in the ground construction layers during the construction of subgrades. In: Engineering and mining geophysics 2019 15th conference and exhibition. Published. https://doi.org/10.3997/2214-4609.201901698
Simpson D, Lehouck A, Meirvenne MV, Bourgeois J, Thoen E, Vervloet J (2008) Geoarchaeological prospection of a medieval manor in the Dutch polders using an electromagnetic induction sensor in combination with soil augerings. Geoarchaeology 23(2):305–319. https://doi.org/10.1002/gea.20214
Sudduth K, Drummond S, Kitchen N (2001) Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Comput Electron Agric 31(3):239–264. https://doi.org/10.1016/s0168-1699(00)00185-x
Tabbagh A (1990) Electromagnetic prospecting. In: Scollar I, Tabbagh A, Hesse A, Herzog I (eds) Archaeological prospection and remote sensing. Cambridge University Press, Cambridge
Tan X, Mester A, von Hebel C, Zimmermann E, Vereecken H, van Waasen S, van der Kruk J (2019) Simultaneous calibration and inversion algorithm for multiconfiguration electromagnetic induction data acquired at multiple elevations. Geophysics 84(1):EN1–EN14. https://doi.org/10.1190/geo2018-0264.1
Tang P, Chen F, Jiang A, Zhou W, Wang H, Leucci G, de Giorgi L, Sileo M, Luo R, Lasaponara R, Masini N (2018) Multi-frequency electromagnetic induction survey for archaeological prospection: approach and results in Han Hangu Pass and Xishan Yang in China. Surv Geophys 39(6):1285–1302. https://doi.org/10.1007/s10712-018-9471-5
Taylor RM, Maher BA, Self PG (1986) Magnetite in soils: I. The synthesis of single-domain and superparamagnetic magnetite. Clay Miner 22(4):411–422. https://doi.org/10.1180/claymin.1987.022.4.05
Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press. https://doi.org/10.1017/CBO9781139167932
Tite MS, Mullins C (1971) Enhancement of the magnetic susceptibility of soils on archaeological sites. Archaeometry 13:209–219
Tosti F, Ferrante C (2019) Using ground penetrating radar methods to investigate reinforced concrete structures. Surv Geophys 41(3):485–530. https://doi.org/10.1007/s10712-019-09565-5
Urban TM, Rasic JT, Alix C, Anderson DD, Chisholm L, Jacob RW, Manning SW, Mason OK, Tremayne AH, Vinson D (2019) Magnetic detection of archaeological hearths in Alaska: a tool for investigating the full span of human presence at the gateway to North America. Quatern Sci Rev 211:73–92. https://doi.org/10.1016/j.quascirev.2019.03.018
Uribe M, Angelo D, Capriles J, Castro V, de Porras ME, García M, Gayo E, González J, Herrera MJ, Izaurieta R, Maldonado A, Mandakovic V, McRostie V, Razeto J, Santana F, Santoro C, Valenzuela J, Vidal A (2020a) El Formativo en Tarapacá (3000–1000 aP): arqueología, naturaleza y cultura en la Pampa del Tamarugal, desierto de Atacama, norte de Chile. Lat Am Antiq 31(1):81–102. https://doi.org/10.1017/laq.2019.92
Uribe M, Agüero C, Cabello G, García M, Herrera M, Izaurieta R, Maldonado A, Mandakovic V, Saintenoy T, Santana-Sagredo F, Urrutia F, Vidal-Elgueta A (2020b) Pampa Iluga y las “chacras” de los ancestros (Tarapacá, norte de Chile): tensionando materialidades y ontologías desde la arqueología. Rev Chilena de Antropol 42:371–398. https://doi.org/10.5354/0719-1472.2020b.60497
Urrutia J, Guimerà J, Custodio E, Herrera C, Jódar J, Acosta O, Ansón I (2022) Processes explaining the origin and evolution of groundwater composition in the Andean Precordillera and Altiplano of the Tarapacá Region of northern Chile. Sci Total Environ 805:149742. https://doi.org/10.1016/j.scitotenv.2021.149742
Verdonck L, Launaro A, Vermeulen F, Millett M (2020) Ground-penetrating radar survey at Falerii Novi: a new approach to the study of Roman cities. Antiquity 94(375):705–723
Viguier B, Jourde H, Yáñez G, Lira ES, Leonardi V, Moya CE, García-Pérez T, Maringue J, Lictevout E (2018) Multidisciplinary study for the assessment of the geometry, boundaries and preferential recharge zones of an overexploited aquifer in the Atacama Desert (Pampa del Tamarugal, Northern Chile). J S Am Earth Sci 86:366–383. https://doi.org/10.1016/j.jsames.2018.05.018
Viguier B, Daniele L, Jourde H, Leonardi V, Yáñez G (2019a) Changes in the conceptual model of the pampa del tamarugal aquifer: implications for central depression water resources. J S Am Earth Sci 94:102217. https://doi.org/10.1016/j.jsames.2019.102217
Viguier B, Jourde H, Leonardi V, Daniele L, Christelle Batiot-Guilhe C, Favreau G, De Montety V (2019b) Water table variations in the hyperarid Atacama Desert: role of the increasing groundwater extraction in the pampa del tamarugal (Northern Chile). J Arid Environments 168:9–16. https://doi.org/10.1016/j.jaridenv.2019.05.007
Visconti F, de Paz JM (2020) A semi-empirical model to predict the EM38 electromagnetic induction measurements of soils from basic ground properties. Eur J Soil Sci 72(2):720–738. https://doi.org/10.1111/ejss.13044
Wait JR (1982) Geo-Electromagnetism. Academic Press, New York
Ward SH, Hohmann GW (1987) Electromagnetic theory for geophysical applications. Electromagnetic methods in applied geophysics. Society of Exploration Geophysicists, Tulsa, Oklahoma, pp 131–311
Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gómez-Silva B et al (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52(3):389–398. https://doi.org/10.1007/s00248-006-9055-7
Witten A, Calvert G, Witten B, Levy T (2003) Magnetic and electromagnetic induction studies at archaeological sites in Southwestern Jordan. J Environ Eng Geophys 8(3):209–215. https://doi.org/10.4133/jeeg8.3.209
Zelada L (1986) The influence of the productivity of Prosopis tamarugo on livestock production in the Pampa del Tamarugal - a review. For Ecol Manag 16:15–31