Integration between a demo size post-combustion CO2 capture and full size power plant. An integral approach on energy penalty for different process options

International Journal of Greenhouse Gas Control - Tập 11 - Trang S102-S113 - 2012
Ferran de Miguel Mercader1, Guido Magneschi2, Eva Sanchez Fernandez1, Gerard J. Stienstra2, Earl L.V. Goetheer1
1TNO Leeghwaterstraat 46, 2628 CA Delft, The Netherlands
2DNV KEMA for KEMA Nederland B.V., Utrechtseweg 310, 6812 AR Arnhem, The Netherlands

Tài liệu tham khảo

Abu-Zahra, 2007, CO2 capture from power plants. Part I. A parametric study of the technical performance based on monoethanolamine, International Journal of Greenhouse Gas Control, 1, 37, 10.1016/S1750-5836(06)00007-7 Amrollahi, 2011, Optimized process configurations of post-combustion CO2 capture for natural-gas-fired power plant – Exergy analysis, International Journal of Greenhouse Gas Control, 5, 1393, 10.1016/j.ijggc.2011.09.004 Bullen, 2011, Efficiency improvements in fossil-fired power generation with post-combustion carbon capture via improved heat integration and reuse of low grade heat Cousins, 2011, A survey of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption, International Journal of Greenhouse Gas Control, 5, 605, 10.1016/j.ijggc.2011.01.002 Cousins, 2011, Preliminary analysis of process flow sheet modifications for energy efficient CO2 capture from flue gases using chemical absorption, Chemical Engineering Research and Design, 89, 1237, 10.1016/j.cherd.2011.02.008 Dash, 2011, Absorption of carbon dioxide in piperazine activated concentrated aqueous 2-amino-2-methyl-1-propanol solvent, Chemical Engineering Science, 66, 3223, 10.1016/j.ces.2011.02.028 Davis, 2009, Thermal degradation of monoethanolamine at stripper conditions, Energy Procedia, 1, 327, 10.1016/j.egypro.2009.01.045 Freeman, 2010, Carbon dioxide capture with concentrated, aqueous piperazine, International Journal of Greenhouse Gas Control, 4, 119, 10.1016/j.ijggc.2009.10.008 Goetheer, 2009, First pilot results from TNO's solvent development workflow, Carbon Capture Journal, 2 Le Moullec, 2011, Screening of flowsheet modifications for an efficient monoethanolamine (MEA) based post-combustion CO2 capture, International Journal of Greenhouse Gas Control, 5, 727, 10.1016/j.ijggc.2011.03.004 Leites, 2003, The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes, Energy, 28, 55, 10.1016/S0360-5442(02)00107-X Oyenekan, 2007, Alternative stripper configurations for CO2 capture by aqueous amines, AIChE Journal, 53, 3144, 10.1002/aic.11316 Pfaff, 2010, Optimised integration of post-combustion CO2 capture process in greenfield power plants, Energy, 35, 4030, 10.1016/j.energy.2010.06.004 ROAD2020, 2012. http://www.road2020.nl (accessed 11.09.12). Sanchez Fernandez, E., Bergsma, E.J., De Miguel Mercader, F., Goetheer, E.L.V., Vlugt, T.J.H. Optimisation of lean vapour compression (LVC) as an option for post-combustion CO2 capture: net present value maximisation. International Journal of Greenhouse Gas Control, http://dx.doi.org/10.1016/j.ijggc.2012.09.007, in press. US Department of Energy, National Energy Technology Laboratory, 2010 Zero Emission Platform, 2011