Integrating software and hardware hierarchies in an autotuning method for parallel routines in heterogeneous clusters
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agullo E, Demmel J, Dongarra J, Hadri B, Kurzak J, Langou J, Ltaief H, Luszczek P, Tomov S (2009) Numerical linear algebra on emerging architectures: the PLASMA and MAGMA projects. J Phys: Conf Ser 180(1):012037
Ansel J, Kamil S, Veeramachaneni K, Ragan-Kelley J, Bosboom J, O’Reilly U-M, Amarasinghe S (2014) OpenTuner: An extensible framework for program autotuning. In: 23rd International Conference on Parallel Architectures and Compilation Techniques. Edmonton, Canada, ACM, pp 303–316
Augonnet C, Thibault S, Namyst R, Wacrenier P-A (2011) StarPU: a unified platform for task scheduling on heterogeneous multicore architectures. Concurr Comput: Pract Exp 23(2):187–198
Batory D (1992) The design and implementation of hierarchical software systems with reusable components. ACM Trans Softw Eng Methodol 1:355–398
Bernabé G, Cuenca J, García L-P, Giménez D (2015) Auto-tuning techniques for linear algebra routines on hybrid platforms. J Comput Sci 10:299–310
Blackford LS, Choi J, Cleary A, D’Azevedo E, Demmel J, Dhillon I, Dongarra JJ, Hammarling S, Henry G, Petitet A, Stanley K, Walker D, Whaley RC (1997) ScaLAPACK user’s guide. Society for Industrial and Applied Mathematics, Philadelphia
Cámara J, Cuenca J, Giménez D (2019) Hierarchical automatic optimization of high and medium level linear algebra routines. In: 18th International Conference on Computational and Mathematical Methods in Science and Engineering
Chameleon: Dense linear algebra subroutines for heterogeneous and distributed architectures. https://gitlab.inria.fr/solverstack/chameleon. Accessed Sept 2019
cuBLAS. http://docs.nvidia.com/cuda/cublas/. Accessed Sept 2019
Cuenca J, García L-P, Giménez D, Herrera F-J (2017) Guided installation of basic linear algebra routines in a cluster with manycore components. Concurr Comput: Pract Exp 29(15):e4112
Dackland K, Kågström B (1996) A hierarchical approach for performance analysis of ScaLAPACK-based routines using the distributed linear algebra machine. In: Applied Parallel Computing, Industrial Computation and Optimization, Third International Workshop, PARA96. Lyngby, Denmark, pp 186–195
Fatica M (2009) Accelerating Linpack with CUDA on heterogenous clusters. In: 2nd Workshop on General Purpose Processing on Graphics Processing Units. NY, USA, ACM, New York, pp 46–51
Golub G, Van Loan CF (2013) Matrix computations, 4th edn. The John Hopkins University Press, Baltimore
Goto K, van de Geijn RA (2008) Anatomy of high-performance matrix multiplication. ACM Trans Math Softw 34(3):12:1–12:25
Hasanov K, Quintin J-N, Lastovetsky AL (2015) Hierarchical approach to optimization of parallel matrix multiplication on large-scale platforms. J Supercomput 71(11):3991–4014
Intel MKL. http://software.intel.com/en-us/intel-mkl/. Accessed Sept 2019
Ohshima S, Kise K, Katagiri T, Yuba T (2007) Parallel processing of matrix multiplication in a CPU and GPU heterogeneous environment. In: 7th International Conference on High Performance Computing for Computational Science. Springer-Verlag, pp 305–318
Pfaffe P, Grosser T, Tillmann M (2019) Efficient hierarchical online-autotuning: A case study on polyhedral accelerator mapping. In: Proceedings of the ACM International Conference on Supercomputing, ICS ’19, New York, USA, ACM, pp 354–366
PLASMA. http://icl.cs.utk.edu/plasma/. Accessed Sept 2019
Porterfield A, Bhalachandra S, Wang W, Fowler R (2016) Variability: a tuning headache. In: 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp 1069–1072
Stanisic L, Thibault S, Legrand A, Videau B, Méhaut J-F (2015) Faithful performance prediction of a dynamic task-based runtime system for heterogeneous multi-core architectures. Concurr Comput: Pract Exp 27(16):4075–4090
Williams S, Oliker L, Carter J, Shalf J (2011) Extracting ultra-scale Lattice Boltzmann performance via hierarchical and distributed auto-tuning. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’11, New York, USA, ACM, pp 1–12
Yokota R, Barba L (2012) Hierarchical N-body simulations with autotuning for heterogeneous systems. Comput Sci Eng 14(3):30–39