Integrating genetic gain and gap analysis to predict improvements in crop productivity
Tóm tắt
Từ khóa
Tài liệu tham khảo
Archontoulis S. V., 2020, Predicting crop yields and soil‐plant nitrogen dynamics in the U.S. corn belt, Crop Science, 60, 10.1002/csc2.20039
Assefa Y., 2018, Analysis of long‐term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain, Scientific Reports, 8, 4937, 10.1038/s41598-018-23362-x
Breiman L., 1984, Classification and regression trees
Campos H., 2006, Changes in drought tolerance in maize associated with fifty year of breeding for yield in the U.S. corn belt, Maydica, 51, 369
Choudhary S., 2013, Hydraulic conductance in maize hybrids differing in breakpoint of transpiration response to increasing vapor pressure deficit, Crop Science, 54, 1147, 10.2135/cropsci2013.05.0303
Comstock R. E., 1977, Proc. Int. Conf. on Quant. Genet., Ames, Iowa. 16–21 Aug, 705
Duvick D. N., 2004, Long‐term selection in a commercial hybrid maize breeding program, Plant Breeding Reviews, 24, 109
Fischer T. Byerlee D. &Edmeades G.(2014).Crop yields and global food security: Will yield increase continue to feed the world?ACIAR Monograph No. 158. Australian Centre for International Agricultural Research. Canberra.
Gilmour A. R. Gogel B. J. Cullis B. R. Welham S. J. &Thompson R.(2015).ASReml user guide release 4.1 structural specification. VSN International Ltd Hemel Hempstead HP1 1ES UK. Retrieved fromwww.vsni.co.uk
Hammer G. L., 2020, Designing crops for adaptation to the drought and high temperature risks anticipated in future climates, Crop Science, 60, 10.1002/csc2.20110
Kruseman G., 2020, CGIAR modeling approaches for resource‐constrained scenarios: II. Models for analyzing socio‐economic factors to improve policy recommendations, Crop Science, 60, 10.1002/csc2.20114
Lӧffler C. M., 2005, Classification of maize environments using crop simulation and geographic information systems, Crop Science, 45, 1708, 10.2135/cropsci2004.0370
McFadden J., 2019, Development, adoption, and management of drought‐tolerant corn in the United States
Messina C., 2009, Crop physiology: Interfacing with genetic improvement and agronomy, 235, 10.1016/B978-0-12-374431-9.00010-4
R Core Team, 2014, R: A language and environment for statistical computing
Ramirez‐Villegas J., 2020, CGIAR modeling approaches for resource‐constrained scenarios: II. Accelerating crop breeding for a changing climate, Crop Science, 60, 10.1002/csc2.20048
Sadras V. O., 2015, Yield gap analysis of field crops – Methods and case studies
Shekoofa A., 2015, Variation among maize hybrids in response to high vapor pressure deficit at high temperatures, Crop Science, 55, 392