Integrating bottom-up classification and top-down feedback for improving urban land-cover and functional-zone mapping

Remote Sensing of Environment - Tập 212 - Trang 231-248 - 2018
Xiuyuan Zhang1, Shihong Du1, Qiao Wang2
1Institute of Remote Sensing and GIS, Peking University, Beijing 100871, China
2Satellite Environment Center, Ministry of Environmental Protection, Beijing, 100094, China

Tài liệu tham khảo

Alberti, 2004, Urban land-cover change analysis in central Puget Sound, Photogramm. Eng. Remote. Sens., 70, 1043, 10.14358/PERS.70.9.1043 Baatz, 2000, Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation, XII, 12 Blaschke, 2010, Object based image analysis for remote sensing, ISPRS J. Photogramm. Remote Sens., 65, 2, 10.1016/j.isprsjprs.2009.06.004 Bosch, 2006, Scene classification via pLSA, 517 Boutell, 2004, Learning multi-label scene classification, Pattern Recogn., 37, 1757, 10.1016/j.patcog.2004.03.009 Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324 Burnett, 2003, A multi-scale segmentation/object relationship modelling methodology for landscape analysis, Ecol. Model., 168, 233, 10.1016/S0304-3800(03)00139-X Calle, 2011, Letter to the editor: stability of random forest importance measures, Brief. Bioinform., 12, 86, 10.1093/bib/bbq011 Cao, 2007, Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes, 1 Castella, 2007, Combining top-down and bottom-up modelling approaches of land use/cover change to support public policies: application to sustainable management of natural resources in northern Vietnam, Land Use Policy, 24, 531, 10.1016/j.landusepol.2005.09.009 Chen, 2003, Strategies for integrating information from multiple spatial resolutions into land-use/land-cover classification routines, Photogramm. Eng. Remote. Sens., 69, 1279, 10.14358/PERS.69.11.1279 Cleve, 2008, Classification of the wildland–urban interface: a comparison of pixel-and object-based classifications using high-resolution aerial photography, Comput. Environ. Urban. Syst., 32, 317, 10.1016/j.compenvurbsys.2007.10.001 Cohen, 2000, Hierarchical models in cognition: do they have psychological reality?, Eur. J. Cogn. Psychol., 12, 1, 10.1080/095414400382181 Drǎguţ, 2010, ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data, Int. J. Geogr. Inf. Sci., 24, 859, 10.1080/13658810903174803 Drăguţ, 2014, Automated parameterisation for multi-scale image segmentation on multiple layers, ISPRS J. Photogramm. Remote Sens., 88, 119, 10.1016/j.isprsjprs.2013.11.018 Du, 2015, Semantic classification of urban buildings combining VHR image and GIS data: an improved random forest approach, ISPRS J. Photogramm. Remote Sens., 105, 107, 10.1016/j.isprsjprs.2015.03.011 Duchenne, 2011, A graph-matching kernel for object categorization, 1792 Farabet, 2013, Learning hierarchical features for scene labeling, IEEE Trans. Pattern Anal. Mach. Intell., 35, 1915, 10.1109/TPAMI.2012.231 Farahzadeh, 2015, Semantic and spatial content fusion for scene recognition, 33 Franco-Lopez, 2001, Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method, Remote Sens. Environ., 77, 251, 10.1016/S0034-4257(01)00209-7 Friedl, 1997, Decision tree classification of land cover from remotely sensed data, Remote Sens. Environ., 61, 399, 10.1016/S0034-4257(97)00049-7 Gatrell, 1996, Spatial point pattern analysis and its application in geographical epidemiology, Trans. Inst. Br. Geogr., 256, 10.2307/622936 Haack, 1987, An assessment of Landsat MSS and TM data for urban and near-urban land-cover digital classification, Remote Sens. Environ., 21, 201, 10.1016/0034-4257(87)90053-8 Haase, 1995, Spatial pattern analysis in ecology based on Ripley's K-function: introduction and methods of edge correction, J. Veg. Sci., 6, 575, 10.2307/3236356 Hay, 2003, A comparison of three image-object methods for the multiscale analysis of landscape structure, ISPRS J. Photogramm. Remote Sens., 57, 327, 10.1016/S0924-2716(02)00162-4 Heiden, 2012, Urban structure type characterization using hyperspectral remote sensing and height information, Landsc. Urban Plan., 105, 361, 10.1016/j.landurbplan.2012.01.001 Heydari, 2018, Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites, Remote Sens. Environ., 204, 648, 10.1016/j.rse.2017.09.035 Indyk, 1998, Approximate nearest neighbors: towards removing the curse of dimensionality Johnson, 2013, Classifying a high resolution image of an urban area using super-object information, ISPRS J. Photogramm. Remote Sens., 83, 40, 10.1016/j.isprsjprs.2013.05.008 Kontschieder, 2014, Structured labels in random forests for semantic labelling and object detection, IEEE Trans. Pattern Anal. Mach. Intell., 36, 2104, 10.1109/TPAMI.2014.2315814 Lewis, 2001, A generalized confusion matrix for assessing area estimates from remotely sensed data, Int. J. Remote Sens., 22, 3223, 10.1080/01431160152558332 Li, 2016, Unsupervised multilayer feature learning for satellite image scene classification, IEEE Geosci. Remote Sens. Lett., 13, 157, 10.1109/LGRS.2015.2503142 Lienou, 2010, Semantic annotation of satellite images using latent Dirichlet allocation, IEEE Geosci. Remote Sens. Lett., 7, 28, 10.1109/LGRS.2009.2023536 Matsuoka, 2008, People needs in the urban landscape: analysis of landscape and urban planning contributions, Landsc. Urban Plan., 84, 7, 10.1016/j.landurbplan.2007.09.009 Meinel, 2004, A comparison of segmentation programs for high resolution remote sensing data, Int. Arch. Photogramm. Remote Sens., 35, 1097 Molinario, 2016, High resolution satellite remote sensing used in a stratified random sampling scheme to quantify the constituent land cover components of the shifting cultivation mosaic of the Democratic Republic of Congo Moser, 2013, Combining support vector machines and Markov random fields in an integrated framework for contextual image classification, IEEE Trans. Geosci. Remote Sens., 51, 2734, 10.1109/TGRS.2012.2211882 Myint, 2011, Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery, Remote Sens. Environ., 115, 1145, 10.1016/j.rse.2010.12.017 Pal, 2005, Random forest classifier for remote sensing classification, Int. J. Remote Sens., 26, 217, 10.1080/01431160412331269698 Pal, 2005, Support vector machines for classification in remote sensing, Int. J. Remote Sens., 26, 1007, 10.1080/01431160512331314083 Payne, 2005, Indoor vs. outdoor scene classification in digital photographs, Pattern Recogn., 38, 1533, 10.1016/j.patcog.2004.12.014 Peña-Barragán, 2011, Object-based crop identification using multiple vegetation indices, textural features and crop phenology, Remote Sens. Environ., 115, 1301, 10.1016/j.rse.2011.01.009 Pickett, 2015, Global urbanization as a shifting context for applying ecological science toward the sustainable city, Ecosyst. Health Sustain., 1, 1, 10.1890/EHS14-0014.1 Ri, 2015, Bayesian network based semantic image classification with attributed relational graph, Multimedia Tools Appl., 74, 4965, 10.1007/s11042-014-1858-9 Roetter, 2005, Integration of Systems Network (SysNet) tools for regional land use scenario analysis in Asia, Environ. Model. Softw., 20, 291, 10.1016/j.envsoft.2004.01.001 Serrano, 2002, A computationally efficient approach to indoor/outdoor scene classification, vol. 4, 146 Serrano, 2004, Improved scene classification using efficient low-level features and semantic cues, Pattern Recogn., 37, 1773, 10.1016/j.patcog.2004.03.003 Shin, 2009, Residential redevelopment and the entrepreneurial local state: the implications of Beijing's shifting emphasis on urban redevelopment policies, Urban Stud., 46, 2815, 10.1177/0042098009345540 Silveira, 2009, Comparison of segmentation methods for melanoma diagnosis in dermoscopy images, IEEE J. Sel. Top. Signal Process., 3, 35, 10.1109/JSTSP.2008.2011119 Song, 2015, Satellite image scene classification using spatial information Stuckens, 2000, Integrating contextual information with per-pixel classification for improved land cover classification, Remote Sens. Environ., 71, 282, 10.1016/S0034-4257(99)00083-8 Townsend, 2009, Spatial pattern analysis for monitoring protected areas, Remote Sens. Environ., 113, 1410, 10.1016/j.rse.2008.05.023 Verburg, 2006, Simulating feedbacks in land use and land cover change models, Landsc. Ecol., 21, 1171, 10.1007/s10980-006-0029-4 Verburg, 2009, Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model, Landsc. Ecol., 24, 1167, 10.1007/s10980-009-9355-7 Waseem, 2013, Decomposition method for solving system of linear equations, Eng. Math. Lett., 2, 34 Wen, 2016, A novel automatic change detection method for urban high-resolution remotely sensed imagery based on multiindex scene representation, IEEE Trans. Geosci. Remote, 54, 609, 10.1109/TGRS.2015.2463075 Yan, 2003, On predicting rare classes with SVM ensembles in scene classification, vol. 3, III-21 Yao, 2016, Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model, Int. J. Geogr. Inf. Sci., 1 Yoshida, 1994, Neural network approach to land cover mapping, IEEE Trans. Geosci. Remote Sens., 32, 1103, 10.1109/36.312899 Zhang, 2015, A linear Dirichlet mixture model for decomposing scenes: application to analyzing urban functional zonings, Remote Sens. Environ., 169, 37, 10.1016/j.rse.2015.07.017 Zhang, 2016, Learning selfhood scales for urban land cover mapping with very-high-resolution VHR images, Remote Sens. Environ., 178, 172, 10.1016/j.rse.2016.03.015 Zhang, 2001, Fully-fuzzy supervised classification of sub-urban land cover from remotely sensed imagery: statistical and artificial neural network approaches, Int. J. Remote Sens., 22, 615, 10.1080/01431160050505883 Zhang, 2015, Semantic classification of heterogeneous urban scenes using intrascene feature similarity and interscene semantic dependency, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 2005, 10.1109/JSTARS.2015.2414178 Zhang, 2017, Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data, ISPRS J. Photogramm. Remote Sens., 132, 170, 10.1016/j.isprsjprs.2017.09.007 Zhang, 2018, Multiscale geoscene segmentation for extracting urban functional zones from VHR satellite images, Remote Sens., 10, 281, 10.3390/rs10020281 Zhao, 2016, Scene classification using multi-scale deeply described visual words, Int. J. Remote Sens., 37, 4119, 10.1080/01431161.2016.1207266 Zhao, 2009, Transportation implications of metropolitan spatial planning in mega-city Beijing, Int. Dev. Plan. Rev., 31, 235, 10.3828/idpr.31.3.2 Zhu, 2000, Integrating bottom-up/top-down for object recognition by data driven Markov chain Monte Carlo, vol. 1, 738