Integrating QDWD with pattern distinctness and local contrast for underwater saliency detection

Muwei Jian1,2, Qiang Qi1, Junyu Dong1, Yilong Yin2, Kin‐Man Lam3,1
1Department of Computer Science and Technology, Ocean University of China, Qingdao, China
2School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan, China
3Centre for Signal Processing, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong

Tóm tắt

Từ khóa


Tài liệu tham khảo

Itti, 1998, A model of saliency based visual attention for rapid scene analysis, IEEE Trans. Pattern Anal. Mach. Intell., 20, 1254, 10.1109/34.730558

Lee, 2016, Compressed domain video using global and local spatiotemporal features, J. Vis. Commun. Image Represent., 35, 169, 10.1016/j.jvcir.2015.12.011

Chen, 2016, Visual saliency detection based on homology similarity and an experimental evaluation, J. Vis. Commun. Image Represent., 40, 251, 10.1016/j.jvcir.2016.06.013

Hati, 2017, An image texture insensitive method for saliency detection, J. Vis. Commun. Image Represent., 43, 212, 10.1016/j.jvcir.2017.01.007

Liu, 2017, A paraboost method to image quality assessment, IEEE Trans. Neural Networks Learn. Syst., 28, 107, 10.1109/TNNLS.2015.2500268

Y. Li, Y. Ma, H. Zhang, Salient region detection and tracking in video, in: International Conference on Multimedia and Expo (ICME), vol. 2, 2003, pp. 269–272.

Y. Park, Y. Li, Extracting salient keywords from instructional videos using joint text, audio and visual cues, in: Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics-Human Language Technologies (NAACL-HLT), 2006, pp. 109–112.

J. Harel, C. Koch, P. Perona, Graph-based visual saliency, in: Advances in Neural Information Processing Systems, 2006, pp. 545–552.

Y. Ma, H. Zhang, Contrast-based image attention analysis by using fuzzy growing, in: ACM Conference on Multimedia, 2003, pp. 374–381.

D. Gao, V. Mahadevan, N. Vasconcelos, The discriminant center-surround hypothesis for bottom-up saliency, in: Advances in Neural Information Processing Systems, 2007, pp. 497–504.

X. Hou, L. Zhang, Saliency detection: a spectral residual approach, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2007, pp. 1–8.

Zhang, 2008, SUN: A bayesian framework for saliency using natural statistics, J. Vision, 8, 1, 10.1167/8.7.32

Yan, 2010, Visual saliency detection via sparsity pursuit, IEEE Signal Process Lett., 17, 739, 10.1109/LSP.2010.2053200

Li, 2010, Optimum subspace learning and error correction for tensors, ECCV, 2010, 790

Goferman, 2012, Context-aware saliency detection, IEEE Trans. Pattern Anal. Mach. Intell., 34, 1915, 10.1109/TPAMI.2011.272

L. Wang, J. Xue, N. Zheng, et al., Automatic salient object extraction with contextual cue, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 105–112.

Y. Lu, W. Zhang, H. Lu, et al., Salient object detection using concavity context, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 233–240.

Toet, 2011, Computational versus psychophysical bottom-up image saliency: A comparative evaluation study, IEEE Trans. Pattern Anal. Mach. Intell., 33, 2131, 10.1109/TPAMI.2011.53

N. Murray, M. Vanrell, X. Otazu, et al., Saliency estimation using a non-parametric low-level vision model, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 433–440.

F. Perazzi, P. Krähenbühl, Y. Pritch, et al., Saliency filters: Contrast based filtering for salient region detection, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 733–740.

X. Shen, Y. Wu, A unified approach to salient object detection via low rank matrix recovery, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 853–860.

C. Yang, L. Zhang, H. Lu, et al., Saliency detection via graph-based manifold ranking, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 3166–3173.

Fang, 2014, Saliency detection for stereoscopic images, IEEE Trans. Image Process., 23, 2625, 10.1109/TIP.2014.2305100

Fang, 2014, Video saliency incorporating spatiotemporal cues and uncertainty weighting, IEEE Trans. Image Process., 23, 3910, 10.1109/TIP.2014.2336549

Dong, 2014, Saliency detection in computer rendered images based on object-level contrast, J. Vis. Commun. Image Represent., 25, 525, 10.1016/j.jvcir.2013.11.009

Erdem, 2013, Visual saliency estimation by nonlinearly integrating features using region covariances, J. Vision, 13, 11, 10.1167/13.4.11

Yang, 2013, Graph-regularized saliency detection with convex-hull-based center prior, IEEE Signal Proces. Let., 20, 637, 10.1109/LSP.2013.2260737

R. Margolin, A. Tal, L. Zelnik-Manor. What makes a patch distinct?, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 1139–1146.

Tong, 2014, Saliency detection with multi-scale superpixels, IEEE Signal Process Lett., 21, 1035, 10.1109/LSP.2014.2323407

Fang, 2015, Visual acuity inspired saliency detection by using sparse features, Inf. Sci., 309, 1, 10.1016/j.ins.2015.03.004

M. Jian, Q. Qi, Y. Sun, et al., Saliency Detection using quaternionic distance based weber descriptor and object cues, in: APSIPA ASC'2016, Korean, 2016.

A. Oliva, A. Torralba, M. S. Castelhano, et al., Top-down control of visual attention in object detection, in: International Conference on Image Processing, vol. 1, 2003.

A. Borji, Boosting bottom-up and top-down visual features for saliency estimation, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 438–445.

H. Cholakkal, D. Rajan, J. Johnson, Top-down saliency with locality-constrained contextual sparse coding, BMVC, 2015.

He, 2015, Exemplar-driven top-down saliency detection via deep association, IJCV, 115, 330, 10.1007/s11263-015-0822-0

Wang, 2011, Underwater object detection based on background subtraction and a saliency map, Shandong Daxue Xuebao (GongxueBan), 41, 12

Wu, 2010, Underwater object detection based on gravity gradient, IEEE Geosci. Remote Sens. Lett., 7, 362, 10.1109/LGRS.2009.2035455

Jian, 2015, Visual-patch-attention-aware Saliency Detection, IEEE Trans. Cybern., 45, 1575, 10.1109/TCYB.2014.2356200

Lan, 2015, Quaternionic weber local descriptor of color images, IEEE Trans. Circuits Syst. Video Technol.

C. Cai, S. Mitra, A normalized color difference edge detector based on quaternion representation, in: IEEE International Conference on Image Processing, 2000, pp. 816–819.

Geng, 2012, Quaternion switching filter for impulse noise reduction in color image, Signal Process., 92, 150, 10.1016/j.sigpro.2011.06.015

Jin, 2007, An efficient color-impulse detector and its application to color images, IEEE Signal Process Lett., 14, 397, 10.1109/LSP.2006.887840

Jin, 2013, Quaternion-based impulse noise removal from color video sequences, IEEE Trans. Circuits Syst. Video Technol., 23, 741, 10.1109/TCSVT.2012.2207272

Soille, 2003

M. Jian, Q. Qi, J. Dong, et al., Saliency detection using quaternionic distance based weber local descriptor and level priors, Multimedia Tools Appl. (2017) 1–18.

Fang, 2014, A video saliency detection model in compressed domain, IEEE Trans. Circuits Syst. Video Technol., 24, 27, 10.1109/TCSVT.2013.2273613

Huang, 2017, Salient object detection via multiple instance learning, IEEE Trans. Image Process., 26, 1911, 10.1109/TIP.2017.2669878

Zhong, 2016, Perception-oriented video saliency detection via spatio-temporal attention analysis, Neurocomputing, 207, 178, 10.1016/j.neucom.2016.04.048

Cheng, 2015, Global contrast based salient region detection, IEEE Trans. Pattern Anal. Mach. Intell., 37, 569, 10.1109/TPAMI.2014.2345401

Q. Yan, L. Xu, J. Shi, et al., Hierarchical saliency detection, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 1155–1162.

N. Tong, H. Lu, X. Ruan, et al., Salient object detection via bootstrap learning, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1884–1892.

Chen, 2017, Exploring visual attention using random walks based eye tracking protocols, J. Vis. Commun. Image Represent., 45, 147, 10.1016/j.jvcir.2017.02.005

Sharon, 2012, Image segmentation by probabilistic bottom-up aggregation and cue integration, IEEE Trans. Pattern Anal. Mach. Intell., 34, 315, 10.1109/TPAMI.2011.130

Zhang, 2016, Robust visual tracking via convolutional networks without training, IEEE Trans. Image Process., 25, 1779

M. Jian, Qi. Qi, J. Dong, et al., The OUC-vision large-scale underwater image database, in: IEEE International Conference on Multimedia and Expo (ICME 2017), Hong Kong, July 2017, pp. 1297–1302. The OUC-Vision Large-Scale Underwater Image Database: http://cs.sdufe.edu.cn/info/1162/2389.htm.