Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tích hợp Các Yếu Tố Sử Dụng Đất và Kinh Tế Xã Hội vào Nghiên Cứu Tác Động của Nhu Cầu Di Chuyển Theo Kịch Bản và Khí Thải Carbon
Tóm tắt
Việc tích hợp quy hoạch sử dụng đất và giao thông với sự phân bố không gian hiện tại và tương lai của dân số và việc làm là một thách thức nhưng rất quan trọng cho các kết quả quy hoạch bền vững. Thách thức này cụ thể là cách mà các yếu tố bền vững (ví dụ, khí thải carbon dioxide) và các thay đổi về sử dụng đất và kinh tế xã hội được xem xét một cách hợp lý. Để giải quyết thách thức này, bài báo này trình bày một khuôn khổ mô hình hóa và tính toán tích hợp cho phân tích hệ thống các tác động môi trường của giao thông ở quy mô khu vực và dự án đối với các mô hình kết hợp sử dụng đất và các hoạt động giao thông liên quan. Một nền tảng tính toán tổng hợp đã được phát triển để tạo điều kiện cho phân tích định lượng dựa trên kịch bản về các cơ chế nguyên nhân và tác động giữa các thay đổi sử dụng đất và/hoặc các chiến lược quản lý và kiểm soát giao thông, tác động của chúng đối với khả năng di chuyển giao thông và môi trường. Bên trong nền tảng tích hợp này, nhiều mô hình cho mẫu mã sử dụng đất, dự báo nhu cầu đi lại, mô phỏng giao thông, khí thải xe cộ và carbon, cũng như các biện pháp vận hành và bền vững khác được tích hợp bằng các mô hình toán học trong môi trường Hệ thống Thông tin Địa lý. Hơn nữa, một nghiên cứu trường hợp về khu vực Greater Cincinnati ở cấp độ khu vực đã được thực hiện để kiểm tra chức năng tích hợp như một công cụ có khả năng cho quy hoạch đô thị, phân tích giao thông và môi trường. Kết quả nghiên cứu trường hợp chỉ ra rằng điều tra tích hợp như vậy có thể giúp đánh giá các chiến lược trong quy hoạch sử dụng đất và quản lý hệ thống giao thông nhằm cải thiện tính bền vững.
Từ khóa
#tích hợp quy hoạch sử dụng đất #giao thông #phân tích tác động môi trường #mô hình hóa #yêu cầu đi lại #khí thải carbonTài liệu tham khảo
Arts J, Hanekamp T, Dijkstra A (2014) Integrating land-use and transport infrastructure planning: towards adaptive and sustainable transport infrastructure. In: Transport research arena 2014, Paris
Heeres N, Tillema T, Arts J (2012) Duurzame Planning Van Weginfrastructuur: Een International Perspectief (Sustainable Planning of Road Infrastructure an International Perspective). Research report Faculty of Spatial Sciences, University of Groningen, Groningen
Wei H, Liu H, Lu M, Coifman B (2014) Traffic data and integrated project-level PM2.5 conformity analysis. Research report no.: FHWA/OH-2014/9
Wei H, Yang YJ, Wang X, Yao Z, Liu H, Liang S (2012) Framework for integrating traffic-source emission estimates into sustainability analysis. In: ASCE proceedings of 12th COTA international conference of transportation professionals (CICTP 2012), Beijing, China, August 3–6, 2012
Handy S, Tal G, Boarnet MG (2013) Policy brief on the impacts of regional accessibility based on a review of the empirical literature. California Air Resources Board, California. https://arb.ca.gov/cc/sb375/policies/regaccess/regional_accessibility_brief120313.pdf. Accessed July 2016
U.S. Environmental Protection Agency (U.S. EPA) (2015) Social Cost of Carbon. https://www.epa.gov/climatechange/social-cost-carbon. Accessed July 2016
Dasigi S (2015) An integrated approach linking land use and socioeconomic characteristics for improving travel demand forecasting. Master of Science Thesis (Advisor: Heng Wei). University of Cincinnati
Zuo T, Wei H, Liu H (2016) Impacts of compact development density on travel demand: a scenario-based analysis in Hamilton County, Ohio, U.S. (Paper No.: 16-4135). In: Compendium of papers for 95th transportation research board annual meeting, Washington, DC, January 10–14, 2016
Wu P (2007) Modeling transportation-related emissions using GIS. In: 86th annual meeting of the transportation research board, Washington, DC
Yao Z, Wei H, Rohne A, Corey J, Perugu H (2015) Connecting household socioeconomics and travel carbon footprint: empirical results from high-resolution GPS household travel survey (Paper No.: 15-5897). In: Compendium of papers for 94th transportation research board annual meeting, Washington, DC, January 11–15, 2015
Boarnet M, Crane R (2001) The influence of land use on travel behavior: specification and estimation strategies. Transp Res A Policy Pract 35(9):823–845
Halat H, Saberi M, Mahmassani HS (2015) Land use and travel behavior: empirical evidence of the effects of mixed-use development on travel mode choice in Chicago. In: Transportation research board 94th annual meeting (No. 15-3950)
Litman T (2015) Land use impacts on transport how land use factors affect travel behavior. Victoria Transport Policy Institute, Victoria
Maat K, Harts JJ (2001) Implications of urban development for travel demand in the Netherlands. Transp Res Rec J Trans Res Board 1780:9–16
Miller SJ (2010) Feasibility of using jobs/housing balance in Virginia statewide planning (No. FHWA/VTRC 11-R1). Virginia Transportation Research Council
Transportation Research Board (TRB) (2009). Driving and the built environment, the effects of compact development on motorized travel, energy use, and CO2 emissions. Special Report 298. Washington, DC
Ewing R, Cervero R (2010) Travel and the built environment: a meta-analysis. J Am Plan Assoc 76(3):265–294
Kockelman MK (1997) Travel behavior as function of accessibility, land use mixing, and land use balance, evidence from San Francisco Bay Area. Transp Res Rec J Transp Res Board 1607:116–125
Boarnet MG, Hsu H-P, Handy S (2011) Draft policy brief on the impacts of jobs-housing balance based on a review of the empirical literature. University of California, Irvine
Crane R, Chatman DG (2003) Traffic and sprawl: evidence from U.S. commuting, 1985 to 1997. Plan Mark 6(1):14–22
Zhang L, Hong J, Nasri A, Shen Q (2012) How built environment affects travel behavior: a comparative analysis of the connections between land use and vehicle miles traveled in UC cites. J Transp Land Use 5(3):40–52
Cervero R, Duncan M (2006) Which reduces vehicle travel more: jobs-housing balance or retail-housing mixing? J Am Plan Assoc 72(4):475–490
Jones PM, Koppelman FS, Orfeuil JP (1990) Activity analysis: state-of-the-art and future directions. In: Jones PM (ed) Developments in dynamic and activity-based approaches to travel analysis, Gower, Aldershot, pp 34–55
Ferdous N, Bhat C, Vana L, Schmitt D, Bowman JL, Bradley M, Pendyala R (2011) Comparison of four-step versus tour-based models in predicting travel behavior before and after transportation system changes: results interpretation and recommendations. Report FHWA/OH-2011/2014. Office of Research and Development, Ohio Department of Transportation, Columbus
Shan R, Zhong M, Lu C (2013) Comparison between traditional four-step and activity-based travel demand modeling—a case study of Tampa, Florida. In: Proceedings of the second international conference on transportation information and safety ICTIS (2013), held in Wuhan, China, June 29–July 2. pp 627–633
Franco V, Kousoulidou M, Muntean M, Ntziachristos L, Hausberger S, Dilara P (2013) Road vehicle emission factors development: a review. Atmos Environ 70:84–97
Liu H, Wei H, Yao Z (2012) Modeling ITS data sources for generating realistic traffic operating parameters for project-level conformity analysis (Paper No. 0401). In: Proceedings for 15th IEEE conference on intelligent transportation systems, Anchorage, Alaska, USA, Sept. 16–19, 2012. ISSN: 2153-0009. pp 1912–1917
Liu H, Wei H, Yao Z (2014a). Validating MOVES PM2.5 emission factor empirically by considering accumulative emission effect. In: ASCE sponsored proceedings for the 14th COTA international conference of transportation professionals (CICTP 2014), Changsha, China, July 4–7, 2014
Liu H, Wei H, Yao Z, Ren H, Ai Q (2014b) Modeling and evaluating short-term on-road PM2.5 emission factor using different traffic data sources (Paper No. 14-3253). In: Compendium of papers CD-ROM for 93rd transportation research board annual meeting, Washington, DC, January 12–16, 2014
Perugu H, Wei H, Yao Z (2016) Estimating the contribution of heavy-duty trucks to the Urban PM2.5 Pollution (Paper No.: 16-1406). In: Compendium of papers for 95th transportation research board annual meeting, Washington, DC, January 10–14, 2016
Perugu H, Wei H, Yao Z (2014) Modeling truck activity using short-term traffic counts for reliable estimation of heavy-duty truck emissions in Urban areas (Paper No. 14-4350). In: Compendium of papers CD-ROM for 93rd transportation research board annual meeting, Washington, DC, January 12–16, 2014
Yao Z, Wei H, Ma T, Yang J, Ai Q, Liu H (2013) Developing operating mode distribution inputs for MOVES using computer vision-based vehicle data collector. Transp Res Rec J Transp Res Board (2340):49–58
U.S. Environmental Protection Agency (U.S. EPA) (2014) User guide for MOVES2014. U.S. EPA, office of transportation and air quality (OTAQ). Report No.: EPA-420-B-14-055
Coelho MC, Farias T, Rouphail NM (2005) Impact of speed control traffic signals on pollutant emissions. Transp Res D Transp Environ 10(4):323–340
Qu Y, Holmén B, Ravishanker N (2007) Predicting light duty gasoline vehicle on road particle number concentrations from gas concentration using time series cross section regression. Department of Statistics, University of Connecticut, Storrs
Yao Z, Wei H, Wang XH, Liu H, Yang YJ (2014) Scenario-based carbon footprint inventory tool for urban sustainable development decision support: the Cincinnati case study (Paper No. 14-3242). In: Compendium of papers CD-ROM for 93rd transportation research board annual meeting, Washington, DC, January 12–16, 2014
Yao Z, Wei H, Perugu H, Liu H, Li Z (2014) Sensitivity analysis of project level MOVES running emission rates for light and heavy duty vehicles. J Traffic Transp Eng 1(2):81–96
Kim BY, Waysonb RL, Fleming GG (2002) Development of the traffic air quality simulation model (TRAQSIM). http://cat.inist.fr/?aModele=afficheN&cpsidt=18600460
Park S, Rakha H, Farzaneh M, Zietsman J, Lee DW (2010) Development of fuel and emission models for high speed heavy duty trucks, light duty trucks, and light duty vehicles. In: IEEE conference on intelligent transportation systems (ITSC), 2010 13th international IEEE, pp 25–32
Cervero R, Kockelman K (1997) Travel demand and the 3Ds: density, diversity, and design. Transp Res D 2(3):199–219
Gomez-Ibanez JD et al (2009) Driving and the built environment, the effects of compact development on motorized travel, energy use, and CO2 emissions. Transp Res Board, Washington
Ewing R, Dumbaugh E, Brown M (2001) Internalizing travel by mixing land uses study of master-planned communities in south Florida. Transp Res Rec J Transp Res Board 1780:115–120
Bordoloi R, Mote A, Sarkar PP, Mallikarjuna C (2013) Quantification of land use diversity in the context of mixed land use. Soc Behav Sci 104:563–572
Bento AM, Cropper ML, Mobarak AM, Vinha K (2005) The effects of urban spatial structure on travel demand in the United States. Rev Econ Stat 87(3):466–478
Zhou J, Wang Y, Schweitzer L (2012) Jobs/housing balance and employer-based travel demand management program returns to scale: evidence from Los Angeles. Tranp Policy 20:22–25
Hamidi S, Ewing R (2014) A longitudinal study of changes in urban sprawl between 2000 and 2010 in the United States. Landsc Urban Plan 128:72–82
Wargelin L, Stopher P, Minser J, Tierney K, Rhindress M (2012) GPS-based household interview survey for the Cincinnati, Ohio region. Report No.: FHWA/OH-2012/1
Castiglione J, Bradley M, Gliebe J (2015) Activity-based travel demand models: a primer (No. SHRP 2 Report S2-C46-RR-1)
Bowman JL, Ben-Akiva ME (2001) Activity-based disaggregate travel demand model system with activity schedules. Transp Res A Policy Pract 35:1–28
McNally MG (2000) Activity-based models. University of California, Irvine
Newbold KB, Scott DM, Spinney SEL, Kanaroglou P, Paez A (2005) Travel behavior within Canada’s older population: a cohort analysis. J Transp Geogr 13:340–351
Vovsha P, Petersen E, Donnelly R (2004) Impact of intra-household interactions on individual daily activity-travel patterns. Transp Res Rec J Transp Res Board 1898:87–97
U.S. Environmental Protection Agency (U.S. EPA) (2011) Guide to sustainable transportation performance measures