Integrating Household Risk Mitigation Behavior in Flood Risk Analysis: An Agent‐Based Model Approach

Risk Analysis - Tập 37 Số 10 - Trang 1977-1992 - 2017
Toon Haer1, W. J. Wouter Botzen1,2, Hans de Moel1, Jeroen C. J. H. Aerts1
1Institute for Environmental Studies (IVM), VU University, Amsterdam, The Netherlands
2Utrecht University School of Economics (U.S.E), Utrecht University, Utrecht, the Netherlands

Tóm tắt

AbstractRecent studies showed that climate change and socioeconomic trends are expected to increase flood risks in many regions. However, in these studies, human behavior is commonly assumed to be constant, which neglects interaction and feedback loops between human and environmental systems. This neglect of human adaptation leads to a misrepresentation of flood risk. This article presents an agent‐based model that incorporates human decision making in flood risk analysis. In particular, household investments in loss‐reducing measures are examined under three economic decision models: (1) expected utility theory, which is the traditional economic model of rational agents; (2) prospect theory, which takes account of bounded rationality; and (3) a prospect theory model, which accounts for changing risk perceptions and social interactions through a process of Bayesian updating. We show that neglecting human behavior in flood risk assessment studies can result in a considerable misestimation of future flood risk, which is in our case study an overestimation of a factor two. Furthermore, we show how behavior models can support flood risk analysis under different behavioral assumptions, illustrating the need to include the dynamic adaptive human behavior of, for instance, households, insurers, and governments. The method presented here provides a solid basis for exploring human behavior and the resulting flood risk with respect to low‐probability/high‐impact risks.

Từ khóa


Tài liệu tham khảo

10.1016/j.gloenvcha.2012.07.004

10.1126/science.1248222

10.1038/nclimate1979

IPCC, 2014, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

10.1111/risa.12008

10.1007/s11069-004-4546-7

10.1016/j.scitotenv.2015.08.068

10.1080/02508060508691837

10.1029/2008JD011523

10.1038/415514a

10.5194/hess-16-4143-2012

10.5194/nhess-14-1245-2014

10.1016/j.gloenvcha.2013.09.005

10.5194/nhess-11-309-2011

Winsemius HC, 2015, Global drivers of future river flood risk, Nature Climate Change, 1

10.1038/nclimate2124

10.1007/s11166-006-0173-x

10.1111/risa.12091

10.1111/j.1539-6924.2012.01844.x

10.1016/j.ecolecon.2009.02.019

10.1016/j.gloenvcha.2013.07.019

10.1111/j.1539-6924.2011.01783.x

10.1007/BF00055792

10.3368/le.85.2.265

Neumann J, 1947, Theory of Games and Economic Behavior

Filatova T, 2009, Agent‐based urban land markets: Agent's pricing behavior, land prices and urban land use change, Journal of Artificial Societies and Social Simulation, 12, 1

10.3368/le.89.2.227

10.1016/j.ecolecon.2013.01.016

Simon HA, 1972, Theories of bounded rationality, Decision and Organization, 1, 161

10.2307/1914185

10.1007/BF00122574

10.1111/j.1539-6924.2008.01049.x

10.1007/s11166-012-9146-4

10.1016/0167-2681(85)90022-8

Acemoglu D, 2010, Opinion dynamics and learning in social networks, Dynamic Games and Applications, 3

Kunreuther HC, 2013, The Behavioral Foundations of Public Policy, 536

10.1371/journal.pone.0084592

10.1111/j.1539-6924.2006.00741.x

10.3763/ehaz.2009.0023

Surminski S, 2013, The role of insurance in reducing direct risk—The case of flood insurance, International Review of Environmental and Resource Economics, 7, 241

10.1007/s11069-015-1832-5

10.1038/460685a

10.1016/j.compenvurbsys.2014.06.007

10.1038/nclimate1826

FilatovaT ParkerDC VeenA Van Der.The implications of skewed risk perception for a Dutch coastal land market: Insights from an agent‐based computational economics model.2011;3(December):405–423.

10.1007/s11069-011-9745-4

10.1016/j.envsci.2016.03.006

Moel H, 2014, Evaluating the effect of flood damage‐reducing measures: A case study of the unembanked area of Rotterdam, the Netherlands, Regional Environmental Change, 14, 895

KNMI scientific report WR 2014 KNMI’14: Climate Change Scenarios for the 21st Century ‐ A Netherlands Perspective

JeukenA SlootjesN OostromNVan.Klimaatbestendigheid en opties voor adaptatie in de regio Rijnmond‐Drechtsteden: Analyse van recente resultaten uit klimaatbestendig NL Waterland en Kennis voor Klimaat 2010.

Wilensky U, 1999, NetLogo

10.1016/j.ecolmodel.2006.04.023

10.1016/j.ecolmodel.2010.08.019

10.1111/j.1749-6632.2011.06074.x

10.1111/j.1468-0262.2006.00753.x

10.1111/j.1542-4774.2012.01086.x

10.1017/CBO9780511779329

10.1007/s11166-009-9066-0

10.1287/mnsc.46.11.1497.12080

10.1287/mnsc.1070.0711

10.1007/s11166-008-9039-8

10.1007/s11166-005-5105-7

10.1007/s10683-008-9203-7

10.5194/nhess-5-117-2005

10.1016/j.envsci.2014.01.013

10.1029/2009WR007743

Viscusi WK, 1985, Are individuals bayesian decision makers, American Economic Review, 75, 381

10.1007/BF00209389

10.1016/j.jeem.2012.12.002

10.1142/S0219525900000078

Hegselmann R, 2002, Opinion dynamics and bounded confidence: Models, analysis and simulation, Jasss, 5, 1

10.1142/S0129183107011789

10.1623/hysj.52.5.1016

10.5194/nhess-10-1697-2010

10.1111/j.1752-1688.1995.tb04025.x

10.5194/nhess-12-3507-2012

10.1016/j.jebo.2012.01.005

10.1073/pnas.1008636108

IPCC, 2012, Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation

European Environmental Agency, 2010, Mapping the impacts of natural hazards and technological accidents in Europe An overview of the last decade

10.1080/07900620801923146

10.5751/ES-02348-130141

10.1080/07900620801921363

Husby TG, 2014, Do floods have permanent effects? Evidence from the Netherlands, J Reg Sci, 54, 10.1111/jors.12112

10.1016/j.envsci.2014.10.013

10.1007/978-3-319-16751-0_44

Johnson CL, 2005, Floods as catalysts for policy change: Historical lessons from England and Wales, 561

Rogers RW, 1983, Social Psychophysiology: A Sourcebook, 153

10.1111/j.1539-6924.1988.tb01168.x

10.1080/17477891.2013.832650

10.1016/j.envsci.2013.09.005