Tích hợp tự động hóa tế bào và mô hình dựa trên tác nhân để dự đoán tăng trưởng đô thị: Trường hợp thành phố Dehradun

Journal of the Indian Society of Remote Sensing - Tập 49 - Trang 2779-2795 - 2021
Vaibhav Kumar1, Vivek Kumar Singh2, Kshama Gupta3, Ashutosh Kumar Jha4
1Data Science and Engineering, Indian Institute of Science Education and Research, Bhopal, India
2Center for Environmental Sensing and Modeling, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
3Urban and Regional Studies Department, Indian Institute of Remote Sensing, Dehradun, India
4Geoinformatics Department, Indian Institute of Remote Sensing, Dehradun, India

Tóm tắt

Bài báo này đề xuất một khung cho việc mô phỏng sử dụng đất và che phủ đất (LULC) nhằm ước lượng tăng trưởng đô thị. Khung này kết hợp giữa Tự động hóa Tế bào Markov (CAM) và Mô hình dựa trên Tác nhân (ABM) để khám phá tác động của các yếu tố xã hội - kinh tế, hàng xóm không gian, lựa chọn của các bên liên quan, và các kế hoạch phát triển đến LULC. Phương pháp này áp dụng mô hình CA để khảo sát sự thay đổi không gian - thời gian trong các mẫu LULC và ABM để quan sát vai trò của các yếu tố xã hội - kinh tế khác nhau và các yếu tố thương mại trong môi trường mô phỏng nhằm dự đoán LULC đô thị trong tương lai. Đối với thành phố Dehradun, Ấn Độ, phân tích các mẫu không gian cho thấy độ chính xác không gian đạt 87.86%. Phần lớn khu vực nông nghiệp đô thị và khu vực trống đã được chuyển đổi thành các khu vực thương mại, dân cư có mật độ thấp, trung bình và cao. Mô hình CAM-ABM kết hợp được phát hiện là hiệu quả hơn trong việc dự đoán so với mô hình CAM truyền thống. Các phương pháp được trình bày trong bài báo có thể giúp các nhà ra quyết định dự đoán những yêu cầu, từ đó dẫn đến quản lý tài nguyên tốt hơn và việc ra quyết định thông tin.

Từ khóa

#Lợi dụng đất #che phủ đất #tăng trưởng đô thị #mô hình tự động hóa tế bào #mô hình dựa trên tác nhân

Tài liệu tham khảo

Aarthi, A. D., & Gnanappazham, L. (2018). Urban growth prediction using neural network coupled agents-based Cellular Automata model for Sriperumbudur Taluk, Tamil Nadu, India. The Egyptian Journal of Remote Sensing and Space Science, 21(3), 353–362. https://doi.org/10.1016/j.ejrs.2017.12.004 Ahmed, B., Ahmed, R., & Zhu, X. (2013). Evaluation of model validation techniques in land cover dynamics. ISPRS International Journal of Geo-Information, 2(3), 577–597. https://doi.org/10.3390/ijgi2030577 Azari, M., & Ahadnejad Reveshty, M. (2013). Interference of human impacts in urban growth modelling with transition rules of cellular automata, GIS and multi-temporal satellite imagery: A case study of Maraghe, Iran. Journal of the Indian Society of Remote Sensing, 41(4), 993–1008. https://doi.org/10.1007/s12524-013-0275-2 Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99(Supplement 3), 7280–7287. https://doi.org/10.1073/pnas.082080899 Brown, D. G., Walker, R., Manson, S., & Seto, K. (2012). Modeling land use and land cover change. In Land change science (pp. 395–409). Springer, Dordrecht. Chen, M., Arribas-Bel, D., & Singleton, A. (2019). Understanding the dynamics of urban areas of interest through volunteered geographic information. Journal of Geographical Systems, 21(1), 89–109. https://doi.org/10.1007/s10109-018-0284-3 Clarke, K. C. (2014). Cellular automata and agent-based models. In M. M. Fischer & P. Nijkamp (Eds.), Handbook of regional science (pp. 1217–1233). Berlin: Springer. https://doi.org/10.1007/978-3-642-23430-9_63 Deep, S., & Saklani, A. (2014). Urban sprawl modeling using cellular automata. The Egyptian Journal of Remote Sensing and Space Science, 17(2), 179–187. https://doi.org/10.1016/j.ejrs.2014.07.001 Devendran, A. A., & Lakshmanan, G. (2019). Analysis and prediction of urban growth using neural-network-coupled agent-based cellular automata model for Chennai Metropolitan Area, Tamil Nadu, India. Journal of the Indian Society of Remote Sensing, 47(9), 1515–1526. https://doi.org/10.1007/s12524-019-01003-8 Fitawok, M. B., Derudder, B., Minale, A. S., Van Passel, S., Adgo, E., & Nyssen, J. (2020). Modeling the impact of urbanization on land-use change in Bahir Dar City, Ethiopia: An integrated cellular automata–Markov chain approach. Land, 9(4), 115. https://doi.org/10.3390/land9040115 Gandhi, S. R., Sharma, S. A., & Vyas, A. (2016). Quantifying urban sprawl for Rajkot City using geospatial technology. International Journal of Built Environment and Sustainability, 3(2). https://doi.org/10.11113/ijbes.v3.n2.124 Guan, C., & Rowe, P. G. (2016). Should big cities grow? Scenario-based cellular automata urban growth modeling and policy applications. Journal of Urban Management, 5(2), 65–78. https://doi.org/10.1016/j.jum.2017.01.002 Hamad, R., Balzter, H., & Kolo, K. (2018). Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability, 10(10), 3421. https://doi.org/10.3390/su10103421 He, C., Wei, A., Shi, P., Zhang, Q., & Zhao, Y. (2011). Detecting land-use/land-cover change in rural–urban fringe areas using extended change-vector analysis. International Journal of Applied Earth Observation and Geoinformation, 13(4), 572–585. https://doi.org/10.1016/j.jag.2011.03.002 Heppenstall, A., Malleson, N., & Crooks, A. (2016). “Space, the final Frontier”: How good are agent-based models at simulating individuals and space in cities? Systems, 4(1), 9. https://doi.org/10.3390/systems4010009 Herold, M., Couclelis, H., & Clarke, K. C. (2005). The role of spatial metrics in the analysis and modeling of urban land use change. Computers, Environment and Urban Systems, 29(4), 369–399. https://doi.org/10.1016/j.compenvurbsys.2003.12.001 Jana, A., Bardhan, R., Sarkar, S., & Kumar, V. (2016). Framework to assess and locate affordable and accessible housing for developing nations: Empirical evidences from Mumbai. Habitat International, 57, 88–99. https://doi.org/10.1016/j.habitatint.2016.07.005 Jitendrudu, L. R. B. (2006). Modelling dynamics of urban spatial growth using remote sensing and geographical information system. Andhra University. Retrieved from https://www.iirs.gov.in/iirs/sites/default/files/StudentThesis/thesis_jeetu.pdf Kamusoko, C., Aniya, M., Adi, B., & Manjoro, M. (2009). Rural sustainability under threat in Zimbabwe—Simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Applied Geography, 29(3), 435–447. https://doi.org/10.1016/j.apgeog.2008.10.002 Kitada, K., & Fukuyama, K. (2012). Land-use and land-cover mapping using a gradable classification method. Remote Sensing, 4(6), 1544–1558. https://doi.org/10.3390/rs4061544 Kumar, V., Bandhyopadhyay, S., Ramamritham, K., & Jana, A. (2020a). Optimizing the redevelopment cost of urban areas to minimize the fire susceptibility of heterogeneous urban settings in developing nations: A case from Mumbai, India. Process Integration and Optimization for Sustainability, 4(4), 361–378. https://doi.org/10.1007/s41660-020-00124-9 Kumar, V., Jana, A., & Ramamritham, K. (2020b). Simulating fire-safe cities using a machine learning-based algorithm for the complex urban forms of developing nations: A case of Mumbai India. Geocarto International. https://doi.org/10.1080/10106049.2020.1756463 Kumar, V., Ramamritham, K., & Jana, A. (2019). Resource allocation for handling emergencies considering dynamic variations and urban spaces: Fire fighting in Mumbai. In Proceedings of the tenth international conference on information and communication technologies and development (pp. 1–11). Presented at the ICTD ’19: Tenth International Conference on Information and Communication Technologies and Development, Ahmedabad India: ACM. https://doi.org/10.1145/3287098.3287099 Kumar, V., Ramamritham, K., & Jana, A. (2020c). Effective handling of emergencies in resource constrained urban areas by considering dynamics: A performance analysis. Transportation Research Procedia, 48, 345–362. https://doi.org/10.1016/j.trpro.2020.08.030 Lai, S.-K. (2016). Plan-based decision making for urban complexity. Journal of Urban Management, 5(1), 1–2. https://doi.org/10.1016/j.jum.2016.03.001 Laubenbacher, R., Jarrah, A. S., Mortveit, H. S., & Ravi, S. S. (2012). Agent based modeling, mathematical formalism for. In R. A. Meyers (Ed.), Computational complexity: theory, techniques, and applications (pp. 88–104). New York: Springer. https://doi.org/10.1007/978-1-4614-1800-9_6 Li, X., & Yeh, A. G.-O. (2001). Zoning land for agricultural protection by the integration of remote sensing, GIS, and cellular automata. Photogrammetric Engineering and Remote Sensing, 67(4), 471–478. Li, X., & Yeh, A.G.-O. (2000). Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science, 14(2), 131–152. https://doi.org/10.1080/136588100240886 Liu, D., Zheng, X., & Wang, H. (2020). Land-use simulation and decision-support system (LandSDS): Seamlessly integrating system dynamics, agent-based model, and cellular automata. Ecological Modelling, 417, 108924. https://doi.org/10.1016/j.ecolmodel.2019.108924 Macal, C. M., & North, M. J. (2005). Tutorial on agent-based modeling and simulation. In Proceedings of the winter simulation conference, 2005 (pp. 2–15). Presented at the Winter Simulation Conference, 2005, Orlando, FL. IEEE. https://doi.org/10.1109/WSC.2005.1574234 Maithani, S., Arora, M. K., & Jain, R. K. (2010). An artificial neural network based approach for urban growth zonation in Dehradun city, India. Geocarto International, 25(8), 663–681. https://doi.org/10.1080/10106049.2010.524313 Makido, Y., Shandas, V., & Ferwati, S. (2020). Predicting urban growth. In V. Shandas, C. Skelhorn, & S. Ferwati (Eds.), Urban adaptation to climate change: The role of urban form in mediating rising temperatures (pp. 75–92). Cham: Springer. https://doi.org/10.1007/978-3-030-26586-1_6 Maretto, R. V., Assis, T. O., & Gavlak, A. A. (2010). Simulating urban growth and residential segregation through agent-based modeling. In Social simulation (BWSS), 2010 second Brazilian workshop on (pp. 52–57). IEEE. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6030014. Accessed 7 Feb 2015 Mohan, M., Singh, V. K., Bhati, S., Lodhi, N., Sati, A. P., Sahoo, N. R., et al. (2020). Industrial heat island: A case study of Angul-Talcher region in India. Theoretical and Applied Climatology, 141(1–2), 229–246. https://doi.org/10.1007/s00704-020-03181-9 Mondal, B., Chakraborti, S., Das, D. N., Joshi, P. K., Maity, S., Pramanik, M. K., & Chatterjee, S. (2020). Comparison of spatial modelling approaches to simulate urban growth: A case study on Udaipur city, India. Geocarto International, 35(4), 411–433. https://doi.org/10.1080/10106049.2018.1520922 Nath, B., Wang, Z., Ge, Y., Islam, K., Singh, R. P., & Niu, Z. (2020). Land use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process. ISPRS International Journal of Geo-Information, 9(2), 134. https://doi.org/10.3390/ijgi9020134 Otukei, J. R., & Blaschke, T. (2010). Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation, 12, S27–S31. https://doi.org/10.1016/j.jag.2009.11.002 Pan, H., Zhang, L., Cong, C., Deal, B., & Wang, Y. (2019). A dynamic and spatially explicit modeling approach to identify the ecosystem service implications of complex urban systems interactions. Ecological Indicators, 102, 426–436. https://doi.org/10.1016/j.ecolind.2019.02.059 Pouriyeh, A., Lotfi, F. H., & Pirasteh, S. (2021). Vulnerability assessment and modelling of urban growth using data envelopment analysis. Journal of the Indian Society of Remote Sensing, 49(2), 259–273. https://doi.org/10.1007/s12524-020-01206-4 Pramanik, S., & Punia, M. (2020). Land use/land cover change and surface urban heat island intensity: Source–sink landscape-based study in Delhi, India. Environment, Development and Sustainability, 22(8), 7331–7356. https://doi.org/10.1007/s10668-019-00515-0 Prayitno, G. (2020). Land-use prediction in Pandaan District Pasuruan regency. International Journal of GEOMATE, 18(65). https://doi.org/10.21660/2020.65.41738. Punia, M., & Singh, L. (2012). Entropy approach for assessment of urban growth: A case study of Jaipur, INDIA. Journal of the Indian Society of Remote Sensing, 40(2), 231–244. https://doi.org/10.1007/s12524-011-0141-z Rabehi, W., Guerfi, M., Mahi, H., & Rojas-Garcia, E. (2019). Spatiotemporal monitoring of coastal urbanization dynamics: Case study of Algiers’ Bay, Algeria. Journal of the Indian Society of Remote Sensing, 47(11), 1917–1936. https://doi.org/10.1007/s12524-019-01037-y Rawal, D., Gupta, V., & Vyas, A. (2019). Urban development plan using open source geospatial technology—A Case Study Of Ahmedabad. ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W14, pp. 197–201. https://doi.org/10.5194/isprs-archives-XLII-4-W14-197-2019. Reis, S. (2008). Analyzing land use/land cover changes using remote sensing and GIS in Rize, North-East Turkey. Sensors, 8(10), 6188–6202. https://doi.org/10.3390/s8106188 Roodposhti, M. S., Aryal, J., & Bryan, B. A. (2019). A novel algorithm for calculating transition potential in cellular automata models of land-use/cover change. Environmental Modelling & Software, 112, 70–81. https://doi.org/10.1016/j.envsoft.2018.10.006 Roy, D., & Lees, M. (2020). Understanding resilience in slums using an agent-based model. Computers, Environment and Urban Systems, 80, 101458. https://doi.org/10.1016/j.compenvurbsys.2019.101458 Saadani, S., Laajaj, R., Maanan, M., Rhinane, H., & Aaroud, A. (2020). Simulating spatial–temporal urban growth of a Moroccan metropolitan using CA–Markov model. Spatial Information Research. https://doi.org/10.1007/s41324-020-00322-0 Shi, L., Taubenböck, H., Zhang, Z., Liu, F., & Wurm, M. (2019). Urbanization in China from the end of 1980s until 2010—spatial dynamics and patterns of growth using EO-data. International Journal of Digital Earth, 12(1), 78–94. https://doi.org/10.1080/17538947.2017.1400599 Shoab, M., Singh, V. K., & Ravibabu, M. V. (2021). High-precise true digital orthoimage generation and accuracy assessment based on UAV images. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-021-01364-z Siddiqui, A., Maithani, S., Jha, A. K., Kumar, P., & Srivastav, S. K. (2018). Urban growth dynamics of an Indian metropolitan using CA Markov and logistic regression. The Egyptian Journal of Remote Sensing and Space Science, 21(3), 229–236. https://doi.org/10.1016/j.ejrs.2017.11.006 Sudhira, H. S., Ramachandra, T. V., & Jagadish, K. S. (2004). Urban sprawl: Metrics, dynamics and modelling using GIS. International Journal of Applied Earth Observation and Geoinformation, 5(1), 29–39. https://doi.org/10.1016/j.jag.2003.08.002 Van Dyke Parunak, H., Savit, R., & Riolo, R. L. (1998). Agent-based modeling vs. equation-based modeling: A case study and users’ guide. In J. S. Sichman, R. Conte, & N. Gilbert (Eds.), Multi-agent systems and agent-based simulation (Vol. 1534, pp. 10–25). Springer. https://doi.org/10.1007/10692956_2. Wahyudi, A., Liu, Y., & Corcoran, J. (2019). Generating different urban land configurations based on heterogeneous decisions of private land developers: An agent-based approach in a developing country context. ISPRS International Journal of Geo-Information, 8(5), 229. https://doi.org/10.3390/ijgi8050229 Wolfram, S. (1983). Statistical mechanics of cellular automata. Reviews of Modern Physics, 55(3), 601–644. https://doi.org/10.1103/RevModPhys.55.601 Wolfram, S., & Mallinckrodt, A. J. (1995). Cellular automata and complexity. Computers in Physics, 9(55). https://doi.org/10.1063/1.4823369. Xu, T., Gao, J., & Coco, G. (2019). Simulation of urban expansion via integrating artificial neural network with Markov chain—cellular automata. International Journal of Geographical Information Science, 33(10), 1960–1983. https://doi.org/10.1080/13658816.2019.1600701 Zhou, L., Dang, X., Sun, Q., & Wang, S. (2020). Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustainable Cities and Society, 55, 102045. https://doi.org/10.1016/j.scs.2020.102045