Integrated top-down and bottom-up proteomics mass spectrometry for the characterization of endogenous ribosomal protein heterogeneity

Journal of Pharmaceutical Analysis - Tập 13 - Trang 63-72 - 2023
Ying Zhang1, Qinghua Cai2, Yuxiang Luo1, Yu Zhang3, Huilin Li1,4
1School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
2Henan Engineering Laboratory for Mammary Bioreactor, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
3The Shennong Laboratory, Zhengzhou, 450002, China
4Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China

Tài liệu tham khảo

Pechmann, 2013, The ribosome as a hub for protein quality control, Mol. Cell, 49, 411, 10.1016/j.molcel.2013.01.020 Ikeuchi, 2019, Recent progress on the molecular mechanism of quality controls induced by ribosome stalling, Front. Genet., 9, 743, 10.3389/fgene.2018.00743 Bowman, 2020, Root of the tree: The significance, evolution, and origins of the ribosome, Chem. Rev., 120, 4848, 10.1021/acs.chemrev.9b00742 Peña, 2017, Eukaryotic ribosome assembly, transport and quality control, Nat. Struct. Mol. Biol., 24, 689, 10.1038/nsmb.3454 Petrov, 2015, History of the ribosome and the origin of translation, Proc. Natl. Acad. Sci. U S A, 112, 15396, 10.1073/pnas.1509761112 Korobeinikova, 2012, Ribosomal proteins: Structure, function, and evolution, Biochemistry (Mosc.), 77, 562, 10.1134/S0006297912060028 Kang, 2021, Ribosomal proteins and human diseases: Molecular mechanisms and targeted therapy, Signal Transduct. Target. Ther., 6, 323, 10.1038/s41392-021-00728-8 Turi, 2019, Impaired ribosome biogenesis: Mechanisms and relevance to cancer and aging, Aging, 11, 2512, 10.18632/aging.101922 Boria, 2008, A new database for ribosomal protein genes which are mutated in Diamond-Blackfan anemia, Hum. Mutat., 29, E263−E270, 10.1002/humu.20864 Gazda, 2008, Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients, Am. J. Hum. Genet., 83, 769, 10.1016/j.ajhg.2008.11.004 Oršolić, 2020, Cancer-associated mutations in the ribosomal protein L5 gene dysregulate the HDM2/p53-mediated ribosome biogenesis checkpoint, Oncogene, 39, 3443, 10.1038/s41388-020-1231-6 Weatheritt, 2016, The ribosome-engaged landscape of alternative splicing, Nat. Struct. Mol. Biol., 23, 1117, 10.1038/nsmb.3317 Zhang, 2021, Alternative splicing and cancer: A systematic review, Signal Transduct. Target. Ther., 6, 78, 10.1038/s41392-021-00486-7 Simsek, 2017, An emerging role for the ribosome as a nexus for post-translational modifications, Curr. Opin. Cell Biol., 45, 92, 10.1016/j.ceb.2017.02.010 Petibon, 2021, Regulation of ribosomal protein genes: An ordered anarchy, Wiley Interdiscip. Rev. RNA, 12, e1632, 10.1002/wrna.1632 Smith, 2013, The Consortium for Top Down Proteomics, Proteoform: A single term describing protein complexity, Nat. Methods, 10, 186, 10.1038/nmeth.2369 Aebersold, 2018, How many human proteoforms are there?, Nat. Chem. Biol., 14, 206, 10.1038/nchembio.2576 Smith, 2018, Proteoforms as the next proteomics currency, Science, 359, 1106, 10.1126/science.aat1884 Millán-Zambrano, 2022, Histone post-translational modifications − cause and consequence of genome function, Nat. Rev. Genet., 23, 563, 10.1038/s41576-022-00468-7 Aebersold, 2003, Mass spectrometry-based proteomics, Nature, 422, 198, 10.1038/nature01511 Yates, 2009, Proteomics by mass spectrometry: Approaches, advances, and applications, Annu. Rev. Biomed. Eng., 11, 49, 10.1146/annurev-bioeng-061008-124934 Müller, 2020, The proteome landscape of the kingdoms of life, Nature, 582, 592, 10.1038/s41586-020-2402-x Aebersold, 2016, Mass-spectrometric exploration of proteome structure and function, Nature, 537, 347, 10.1038/nature19949 Chait, 2006, Mass spectrometry: Bottom-up or top-down?, Science, 314, 65, 10.1126/science.1133987 Kelleher, 2004, Peer reviewed: Top-down proteomics, Anal. Chem., 76, 196A−203A, 10.1021/ac0415657 Tran, 2011, Mapping intact protein isoforms in discovery mode using top-down proteomics, Nature, 480, 254, 10.1038/nature10575 Toby, 2016, Progress in top-down proteomics and the analysis of proteoforms, Annu. Rev. Anal. Chem. (Palo Alto Calif.), 9, 499, 10.1146/annurev-anchem-071015-041550 Smith, 2021, The human proteoform project: Defining the human proteome, Sci. Adv., 7, 10.1126/sciadv.abk0734 Catherman, 2014, Top down proteomics: Facts and perspectives, Biochem. Biophys. Res. Commun., 445, 683, 10.1016/j.bbrc.2014.02.041 Melby, 2021, Novel strategies to address the challenges in top-down proteomics, J. Am. Soc. Mass Spectrom., 32, 1278, 10.1021/jasms.1c00099 Hardy, 1969, The ribosomal proteins of Escherichia coli. I. purification of the 30S ribosomal proteins, Biochemistry, 8, 2897, 10.1021/bi00835a031 El-Baba, 2021, Thermal analysis of a mixture of ribosomal proteins by vT-ESI-MS: Toward a parallel approach for characterizing the stabilitome, Anal. Chem., 93, 8484, 10.1021/acs.analchem.1c00772 Burton, 2012, A computational investigation on the connection between dynamics properties of ribosomal proteins and ribosome assembly, PLoS Comput. Biol., 8, 10.1371/journal.pcbi.1002530 Gudkov, 1997, The L7/L12 ribosomal domain of the ribosome: Structural and functional studies, FEBS Lett., 407, 253, 10.1016/S0014-5793(97)00361-X Tsiatsiani, 2015, Proteomics beyond trypsin, FEBS J., 282, 2612, 10.1111/febs.13287 Chabanet, 1992, Prediction of peptide retention time in reversed-phase high-performance liquid chromatography, J. Chromatogr., 599, 211, 10.1016/0021-9673(92)85475-9 Chang, 1976, Identification and characterization of a new methylated amino acid in ribosomal protein L33 of Escherichia coli, Biochem. Biophys. Res. Commun., 73, 233, 10.1016/0006-291X(76)90698-7 Dupree, 2020, A critical review of bottom-up proteomics: The good, the bad, and the future of this field, Proteomes, 8, 14, 10.3390/proteomes8030014 Wingfield, 2017, N-terminal methionine processing, Curr. Protoc. Protein Sci., 88, 10.1002/cpps.29 Demirci, 2008, Multiple-site trimethylation of ribosomal protein L11 by the PrmA methyltransferase, Structure, 16, 1059, 10.1016/j.str.2008.03.016 Suh, 2005, Extending ribosomal protein identifications to unsequenced bacterial strains using matrix-assisted laser desorption/ionization mass spectrometry, Proteomics, 5, 4818, 10.1002/pmic.200402111 Running, 2007, A top-down/bottom-up study of the ribosomal proteins of Caulobacter crescentus, J. Proteome Res., 6, 337, 10.1021/pr060306q Lhoest, 1981, Cold-sensitive ribosome assembly in an Escherichia coli mutant lacking a single methyl group in ribosomal protein L3, Eur. J. Biochem., 121, 33, 10.1111/j.1432-1033.1981.tb06425.x Cameron, 2004, Thermus thermophilus L11 methyltransferase, PrmA, is dispensable for growth and preferentially modifies free ribosomal protein L11 prior to ribosome assembly, J. Bacteriol., 186, 5819, 10.1128/JB.186.17.5819-5825.2004 Brot, 1974, The requirement for ribosomal proteins L7 and L12 in peptide-chain termination, Proc. Natl. Acad. Sci. U S A, 71, 89, 10.1073/pnas.71.1.89 Oleinikov, 1998, A single-headed dimer of Escherichia coli ribosomal protein L7/L12 supports protein synthesis, Proc. Natl. Acad. Sci. U S A, 95, 4215, 10.1073/pnas.95.8.4215 Pettersson, 1980, Ribosomal protein L7/L12 is required for optimal translation, Proc. Natl. Acad. Sci. U S A, 77, 4007, 10.1073/pnas.77.7.4007 Chang, 1978, Temperature-dependent variation in the extent of methylation of ribosomal proteins L7 and L12 in Escherichia coli, J. Bacteriol., 135, 1165, 10.1128/jb.135.3.1165-1166.1978 Ge, 2012, Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans, Nat. Chem. Biol., 8, 960, 10.1038/nchembio.1093 DeBoever, 2018, Medical relevance of protein-truncating variants across 337,205 individuals in the UK Biobank study, Nat. Commun., 9, 1612, 10.1038/s41467-018-03910-9 Vlasak, 2011, Fragmentation of monoclonal antibodies, mAbs, 3, 253, 10.4161/mabs.3.3.15608 Yu, 1993, Identification of the facile gas-phase cleavage of the Asp-Pro and Asp-Xxx peptide bonds in matrix-assisted laser desorption time-of-flight mass spectrometry, Anal. Chem., 65, 3015, 10.1021/ac00069a014 Lerman, 1966, Studies on the structure of ribosomes: II. Stepwise dissociation of protein from ribosomes by caesium chloride and the re-assembly of ribosome-like particles, J. Mol. Biol., 15, 268, 10.1016/S0022-2836(66)80226-7 Blaha, 2022 Khatter, 2015, Structure of the human 80S ribosome, Nature, 520, 640, 10.1038/nature14427 van de Waterbeemd, 2018, Dissecting ribosomal particles throughout the kingdoms of life using advanced hybrid mass spectrometry methods, Nat. Commun., 9, 2493, 10.1038/s41467-018-04853-x Rivas, 2015, Human genomics. Effect of predicted protein-truncating genetic variants on the human transcriptome, Science, 348, 666, 10.1126/science.1261877 Neverov, 2005, Alternative splicing and protein function, BMC Bioinformatics, 6, 266, 10.1186/1471-2105-6-266 Xie, 2018, Ribosomal proteins: Insight into molecular roles and functions in hepatocellular carcinoma, Oncogene, 37, 277, 10.1038/onc.2017.343 Wang, 2015, Ribosomal proteins and human diseases: Pathogenesis, molecular mechanisms, and therapeutic implications, Med. Res. Rev., 35, 225, 10.1002/med.21327 Challa, 2021, Ribosome ADP-ribosylation inhibits translation and maintains proteostasis in cancers, Cell, 184, 4531, 10.1016/j.cell.2021.07.005 Pecoraro, 2021, Ribosome biogenesis and cancer: Overview on ribosomal proteins, Int. J. Mol. Sci., 22, 5496, 10.3390/ijms22115496 Xie, 2020, RPL32 promotes lung cancer progression by facilitating p53 degradation, Mol. Ther. Nucleic Acids, 21, 75, 10.1016/j.omtn.2020.05.019 Li, 2020, RPL21 siRNA blocks proliferation in pancreatic cancer cells by inhibiting DNA replication and inducing G1 arrest and apoptosis, Front. Oncol., 10, 1730, 10.3389/fonc.2020.01730 Ebright, 2020, Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis, Science, 367, 1468, 10.1126/science.aay0939 Slimane, 2020, Ribosome biogenesis alterations in colorectal cancer, Cells, 9, 2361, 10.3390/cells9112361 Bee, 2006, Ribosomal protein L19 is a prognostic marker for human prostate cancer, Clin. Cancer Res., 12, 2061, 10.1158/1078-0432.CCR-05-2445 Muro, 2015, Serum anti-60S ribosomal protein L29 antibody as a novel prognostic marker for unresectable pancreatic cancer, Digestion, 91, 164, 10.1159/000371545 Li, 2012, Silencing expression of ribosomal protein L26 and L29 by RNA interfering inhibits proliferation of human pancreatic cancer PANC-1 cells, Mol. Cell. Biochem., 370, 127, 10.1007/s11010-012-1404-x Ota, 2004, Complete sequencing and characterization of 21,243 full-length human cDNAs, Nat. Genet., 36, 40, 10.1038/ng1285 Labriet, 2019, Germline variability and tumor expression level of ribosomal protein gene RPL28 are associated with survival of metastatic colorectal cancer patients, Sci. Rep., 9, 10.1038/s41598-019-49477-3 Yavor, 2018, High performance gridless ion mirrors for multi-reflection time-of-flight and electrostatic trap mass analyzers, Int. J. Mass Spectrom., 426, 1, 10.1016/j.ijms.2018.01.009 Richardson, 2015, A novel multipass oa-TOF mass spectrometer, Int. J. Mass Spectrom., 377, 309, 10.1016/j.ijms.2014.08.031 Shen, 2021, Capillary zone electrophoresis-electron-capture collision-induced dissociation on a quadrupole time-of-flight mass spectrometer for top-down characterization of intact proteins, J. Am. Soc. Mass Spectrom., 32, 1361, 10.1021/jasms.0c00484 Mehaffey, 2020, Uniting native capillary electrophoresis and multistage ultraviolet photodissociation mass spectrometry for online separation and characterization of Escherichia coli ribosomal proteins and protein complexes, Anal. Chem., 92, 15202, 10.1021/acs.analchem.0c03784 Brown, 2021, Proteomic analysis of the functional inward rectifier potassium channel (kir) 2.1 reveals several novel phosphorylation sites, Biochemistry, 60, 3292, 10.1021/acs.biochem.1c00555 Roberts, 2019, Reproducible large-scale synthesis of surface silanized nanoparticles as an enabling nanoproteomics platform: Enrichment of the human heart phosphoproteome, Nano Res., 12, 1473, 10.1007/s12274-019-2418-4 Schaffer, 2020, Improving proteoform identifications in complex systems through integration of bottom-up and top-down data, J. Proteome Res., 19, 3510, 10.1021/acs.jproteome.0c00332 Cesnik, 2018, Proteoform Suite: Software for constructing, quantifying, and visualizing proteoform families, J. Proteome Res., 17, 568, 10.1021/acs.jproteome.7b00685 Lima, 2021, ProteoCombiner: Integrating bottom-up with top-down proteomics data for improved proteoform assessment, Bioinformatics, 37, 2206, 10.1093/bioinformatics/btaa958